Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation

Hot compression behavior of the Cu–Co–Si and Cu–Co–Si–Ti alloys was studied using the Gleeble-1500 simulator at 0.001–10 s−1 strain rate and 500–900 °C deformation temperature. Ti addition increased the flow stress of the Cu–Co–Si–Ti alloy compared with the Cu–Co–Si alloy at the same deformation con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2020-04, Vol.821, p.153518, Article 153518
Hauptverfasser: Geng, Yongfeng, Li, Xu, Zhou, Honglei, Zhang, Yi, Jia, Yanlin, Tian, Baohong, Liu, Yong, Volinsky, Alex A., Zhang, Xiaohui, Song, Kexing, Wang, Guangxin, Li, Lihua, Hou, Jinrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 153518
container_title Journal of alloys and compounds
container_volume 821
creator Geng, Yongfeng
Li, Xu
Zhou, Honglei
Zhang, Yi
Jia, Yanlin
Tian, Baohong
Liu, Yong
Volinsky, Alex A.
Zhang, Xiaohui
Song, Kexing
Wang, Guangxin
Li, Lihua
Hou, Jinrui
description Hot compression behavior of the Cu–Co–Si and Cu–Co–Si–Ti alloys was studied using the Gleeble-1500 simulator at 0.001–10 s−1 strain rate and 500–900 °C deformation temperature. Ti addition increased the flow stress of the Cu–Co–Si–Ti alloy compared with the Cu–Co–Si alloy at the same deformation conditions. With the deformation temperature increased from 700 °C to 900 °C, the Cu–Co–Si alloy texture transformed from the copper texture to the R texture. Due to the addition of Ti, the copper texture and R texture were substituted by the Goss texture and the copper texture, respectively. The constitutive models of the Cu–Co–Si and Cu–Co–Si–Ti alloys hot deformation behavior were obtained. The activation energy of the Cu–Co–Si alloy was 411.648 kJ/mol, and the activation energy of the Cu–Co–Si–Ti alloy was 500.794 kJ/mol, which is 27% higher. The precipitated Co2Si phase was found in both Cu–Co–Si and Cu–Co–Si–Ti alloys deformed at 700 °C and 0.001 s−1. In addition, the CoSi and Cu4Ti phases were found in the Cu–Co–Si and Cu–Co–Si–Ti alloys, respectively. The strengthening mechanisms, including dispersion strengthening, twinning and grain refinement strengthening, control the Cu–Co–Si–Ti alloy hot deformation, and lead to increased flow stress and activation energy, and inhibit dynamic recrystallization of the Cu–Co–Si–Ti alloy. [Display omitted] •Hot deformation and dynamic recrystallization of the Cu–Co–Si–Ti alloy were studied.•The textures of the two alloys were obtained from the pole figures.•Deformation activation energy is Q = 500.794 kJ/mol by regression analysis.•The addition of Ti can inhibit the dynamic recrystallization of Cu–Co–Si alloy.
doi_str_mv 10.1016/j.jallcom.2019.153518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376730661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819347644</els_id><sourcerecordid>2376730661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-757555fa82b778e87fdd5c93b090ca50935b359f5215d76ae79cd9f9557216613</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouK4-ghDw3Jo0pklOIsv6AQseXM8hmw9NaZuapgt78x18Q5_E7nbvwjADM__5D_MD4BqjHCNc3lZ5pepahyYvEBY5poRifgJmmDOS3ZWlOAUzJAqaccL5Objo-wqhUUnwDHRL56xOMDi49lAZ45MPLRyj8TqGPsVBpyFaaLehHg4z1RrYRat955M6dHwLF8Pv988ijOlttKnrsINmiL79gJ8hQWNdiM1BfAnOnKp7e3Wsc_D-uFwvnrPV69PL4mGVaUJYyhhllFKneLFhjFvOnDFUC7JBAmlFkSB0Q6hwtMDUsFJZJrQRTlDKClyWmMzBzeTbxfA12D7JKgyxHU_KgrCSETSp6KTa_9pH62QXfaPiTmIk93BlJY9w5R6unOCOe_fTnh1f2HobZa-9bbU1fiSTpAn-H4c_V_WH8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730661</pqid></control><display><type>article</type><title>Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation</title><source>Elsevier ScienceDirect Journals</source><creator>Geng, Yongfeng ; Li, Xu ; Zhou, Honglei ; Zhang, Yi ; Jia, Yanlin ; Tian, Baohong ; Liu, Yong ; Volinsky, Alex A. ; Zhang, Xiaohui ; Song, Kexing ; Wang, Guangxin ; Li, Lihua ; Hou, Jinrui</creator><creatorcontrib>Geng, Yongfeng ; Li, Xu ; Zhou, Honglei ; Zhang, Yi ; Jia, Yanlin ; Tian, Baohong ; Liu, Yong ; Volinsky, Alex A. ; Zhang, Xiaohui ; Song, Kexing ; Wang, Guangxin ; Li, Lihua ; Hou, Jinrui</creatorcontrib><description>Hot compression behavior of the Cu–Co–Si and Cu–Co–Si–Ti alloys was studied using the Gleeble-1500 simulator at 0.001–10 s−1 strain rate and 500–900 °C deformation temperature. Ti addition increased the flow stress of the Cu–Co–Si–Ti alloy compared with the Cu–Co–Si alloy at the same deformation conditions. With the deformation temperature increased from 700 °C to 900 °C, the Cu–Co–Si alloy texture transformed from the copper texture to the R texture. Due to the addition of Ti, the copper texture and R texture were substituted by the Goss texture and the copper texture, respectively. The constitutive models of the Cu–Co–Si and Cu–Co–Si–Ti alloys hot deformation behavior were obtained. The activation energy of the Cu–Co–Si alloy was 411.648 kJ/mol, and the activation energy of the Cu–Co–Si–Ti alloy was 500.794 kJ/mol, which is 27% higher. The precipitated Co2Si phase was found in both Cu–Co–Si and Cu–Co–Si–Ti alloys deformed at 700 °C and 0.001 s−1. In addition, the CoSi and Cu4Ti phases were found in the Cu–Co–Si and Cu–Co–Si–Ti alloys, respectively. The strengthening mechanisms, including dispersion strengthening, twinning and grain refinement strengthening, control the Cu–Co–Si–Ti alloy hot deformation, and lead to increased flow stress and activation energy, and inhibit dynamic recrystallization of the Cu–Co–Si–Ti alloy. [Display omitted] •Hot deformation and dynamic recrystallization of the Cu–Co–Si–Ti alloy were studied.•The textures of the two alloys were obtained from the pole figures.•Deformation activation energy is Q = 500.794 kJ/mol by regression analysis.•The addition of Ti can inhibit the dynamic recrystallization of Cu–Co–Si alloy.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.153518</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Activation energy ; Alloys ; Computer simulation ; Constitutive models ; Copper ; Cu-Co-Si and Cu–Co–Si–Ti alloys ; Deformation ; Dispersion hardening alloys ; Dispersion strengthening ; Dynamic recrystallization ; Flow stress ; Grain refinement ; Hot compression ; Hot pressing ; Microstructure evolution ; Silicon base alloys ; Strain rate ; Texture ; Thermal simulators ; Titanium base alloys ; Twinning ; Yield strength</subject><ispartof>Journal of alloys and compounds, 2020-04, Vol.821, p.153518, Article 153518</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-757555fa82b778e87fdd5c93b090ca50935b359f5215d76ae79cd9f9557216613</citedby><cites>FETCH-LOGICAL-c337t-757555fa82b778e87fdd5c93b090ca50935b359f5215d76ae79cd9f9557216613</cites><orcidid>0000-0002-1189-6071 ; 0000-0002-6068-004X ; 0000-0002-8520-6248 ; 0000-0001-8284-2989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.153518$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Geng, Yongfeng</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhou, Honglei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jia, Yanlin</creatorcontrib><creatorcontrib>Tian, Baohong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Wang, Guangxin</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Hou, Jinrui</creatorcontrib><title>Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation</title><title>Journal of alloys and compounds</title><description>Hot compression behavior of the Cu–Co–Si and Cu–Co–Si–Ti alloys was studied using the Gleeble-1500 simulator at 0.001–10 s−1 strain rate and 500–900 °C deformation temperature. Ti addition increased the flow stress of the Cu–Co–Si–Ti alloy compared with the Cu–Co–Si alloy at the same deformation conditions. With the deformation temperature increased from 700 °C to 900 °C, the Cu–Co–Si alloy texture transformed from the copper texture to the R texture. Due to the addition of Ti, the copper texture and R texture were substituted by the Goss texture and the copper texture, respectively. The constitutive models of the Cu–Co–Si and Cu–Co–Si–Ti alloys hot deformation behavior were obtained. The activation energy of the Cu–Co–Si alloy was 411.648 kJ/mol, and the activation energy of the Cu–Co–Si–Ti alloy was 500.794 kJ/mol, which is 27% higher. The precipitated Co2Si phase was found in both Cu–Co–Si and Cu–Co–Si–Ti alloys deformed at 700 °C and 0.001 s−1. In addition, the CoSi and Cu4Ti phases were found in the Cu–Co–Si and Cu–Co–Si–Ti alloys, respectively. The strengthening mechanisms, including dispersion strengthening, twinning and grain refinement strengthening, control the Cu–Co–Si–Ti alloy hot deformation, and lead to increased flow stress and activation energy, and inhibit dynamic recrystallization of the Cu–Co–Si–Ti alloy. [Display omitted] •Hot deformation and dynamic recrystallization of the Cu–Co–Si–Ti alloy were studied.•The textures of the two alloys were obtained from the pole figures.•Deformation activation energy is Q = 500.794 kJ/mol by regression analysis.•The addition of Ti can inhibit the dynamic recrystallization of Cu–Co–Si alloy.</description><subject>Activation energy</subject><subject>Alloys</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Copper</subject><subject>Cu-Co-Si and Cu–Co–Si–Ti alloys</subject><subject>Deformation</subject><subject>Dispersion hardening alloys</subject><subject>Dispersion strengthening</subject><subject>Dynamic recrystallization</subject><subject>Flow stress</subject><subject>Grain refinement</subject><subject>Hot compression</subject><subject>Hot pressing</subject><subject>Microstructure evolution</subject><subject>Silicon base alloys</subject><subject>Strain rate</subject><subject>Texture</subject><subject>Thermal simulators</subject><subject>Titanium base alloys</subject><subject>Twinning</subject><subject>Yield strength</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAQx4MouK4-ghDw3Jo0pklOIsv6AQseXM8hmw9NaZuapgt78x18Q5_E7nbvwjADM__5D_MD4BqjHCNc3lZ5pepahyYvEBY5poRifgJmmDOS3ZWlOAUzJAqaccL5Objo-wqhUUnwDHRL56xOMDi49lAZ45MPLRyj8TqGPsVBpyFaaLehHg4z1RrYRat955M6dHwLF8Pv988ijOlttKnrsINmiL79gJ8hQWNdiM1BfAnOnKp7e3Wsc_D-uFwvnrPV69PL4mGVaUJYyhhllFKneLFhjFvOnDFUC7JBAmlFkSB0Q6hwtMDUsFJZJrQRTlDKClyWmMzBzeTbxfA12D7JKgyxHU_KgrCSETSp6KTa_9pH62QXfaPiTmIk93BlJY9w5R6unOCOe_fTnh1f2HobZa-9bbU1fiSTpAn-H4c_V_WH8g</recordid><startdate>20200425</startdate><enddate>20200425</enddate><creator>Geng, Yongfeng</creator><creator>Li, Xu</creator><creator>Zhou, Honglei</creator><creator>Zhang, Yi</creator><creator>Jia, Yanlin</creator><creator>Tian, Baohong</creator><creator>Liu, Yong</creator><creator>Volinsky, Alex A.</creator><creator>Zhang, Xiaohui</creator><creator>Song, Kexing</creator><creator>Wang, Guangxin</creator><creator>Li, Lihua</creator><creator>Hou, Jinrui</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1189-6071</orcidid><orcidid>https://orcid.org/0000-0002-6068-004X</orcidid><orcidid>https://orcid.org/0000-0002-8520-6248</orcidid><orcidid>https://orcid.org/0000-0001-8284-2989</orcidid></search><sort><creationdate>20200425</creationdate><title>Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation</title><author>Geng, Yongfeng ; Li, Xu ; Zhou, Honglei ; Zhang, Yi ; Jia, Yanlin ; Tian, Baohong ; Liu, Yong ; Volinsky, Alex A. ; Zhang, Xiaohui ; Song, Kexing ; Wang, Guangxin ; Li, Lihua ; Hou, Jinrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-757555fa82b778e87fdd5c93b090ca50935b359f5215d76ae79cd9f9557216613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation energy</topic><topic>Alloys</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Copper</topic><topic>Cu-Co-Si and Cu–Co–Si–Ti alloys</topic><topic>Deformation</topic><topic>Dispersion hardening alloys</topic><topic>Dispersion strengthening</topic><topic>Dynamic recrystallization</topic><topic>Flow stress</topic><topic>Grain refinement</topic><topic>Hot compression</topic><topic>Hot pressing</topic><topic>Microstructure evolution</topic><topic>Silicon base alloys</topic><topic>Strain rate</topic><topic>Texture</topic><topic>Thermal simulators</topic><topic>Titanium base alloys</topic><topic>Twinning</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Yongfeng</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Zhou, Honglei</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jia, Yanlin</creatorcontrib><creatorcontrib>Tian, Baohong</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Song, Kexing</creatorcontrib><creatorcontrib>Wang, Guangxin</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Hou, Jinrui</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Yongfeng</au><au>Li, Xu</au><au>Zhou, Honglei</au><au>Zhang, Yi</au><au>Jia, Yanlin</au><au>Tian, Baohong</au><au>Liu, Yong</au><au>Volinsky, Alex A.</au><au>Zhang, Xiaohui</au><au>Song, Kexing</au><au>Wang, Guangxin</au><au>Li, Lihua</au><au>Hou, Jinrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-04-25</date><risdate>2020</risdate><volume>821</volume><spage>153518</spage><pages>153518-</pages><artnum>153518</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Hot compression behavior of the Cu–Co–Si and Cu–Co–Si–Ti alloys was studied using the Gleeble-1500 simulator at 0.001–10 s−1 strain rate and 500–900 °C deformation temperature. Ti addition increased the flow stress of the Cu–Co–Si–Ti alloy compared with the Cu–Co–Si alloy at the same deformation conditions. With the deformation temperature increased from 700 °C to 900 °C, the Cu–Co–Si alloy texture transformed from the copper texture to the R texture. Due to the addition of Ti, the copper texture and R texture were substituted by the Goss texture and the copper texture, respectively. The constitutive models of the Cu–Co–Si and Cu–Co–Si–Ti alloys hot deformation behavior were obtained. The activation energy of the Cu–Co–Si alloy was 411.648 kJ/mol, and the activation energy of the Cu–Co–Si–Ti alloy was 500.794 kJ/mol, which is 27% higher. The precipitated Co2Si phase was found in both Cu–Co–Si and Cu–Co–Si–Ti alloys deformed at 700 °C and 0.001 s−1. In addition, the CoSi and Cu4Ti phases were found in the Cu–Co–Si and Cu–Co–Si–Ti alloys, respectively. The strengthening mechanisms, including dispersion strengthening, twinning and grain refinement strengthening, control the Cu–Co–Si–Ti alloy hot deformation, and lead to increased flow stress and activation energy, and inhibit dynamic recrystallization of the Cu–Co–Si–Ti alloy. [Display omitted] •Hot deformation and dynamic recrystallization of the Cu–Co–Si–Ti alloy were studied.•The textures of the two alloys were obtained from the pole figures.•Deformation activation energy is Q = 500.794 kJ/mol by regression analysis.•The addition of Ti can inhibit the dynamic recrystallization of Cu–Co–Si alloy.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.153518</doi><orcidid>https://orcid.org/0000-0002-1189-6071</orcidid><orcidid>https://orcid.org/0000-0002-6068-004X</orcidid><orcidid>https://orcid.org/0000-0002-8520-6248</orcidid><orcidid>https://orcid.org/0000-0001-8284-2989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-04, Vol.821, p.153518, Article 153518
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2376730661
source Elsevier ScienceDirect Journals
subjects Activation energy
Alloys
Computer simulation
Constitutive models
Copper
Cu-Co-Si and Cu–Co–Si–Ti alloys
Deformation
Dispersion hardening alloys
Dispersion strengthening
Dynamic recrystallization
Flow stress
Grain refinement
Hot compression
Hot pressing
Microstructure evolution
Silicon base alloys
Strain rate
Texture
Thermal simulators
Titanium base alloys
Twinning
Yield strength
title Effect of Ti addition on microstructure evolution and precipitation in Cu–Co–Si alloy during hot deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Ti%20addition%20on%20microstructure%20evolution%20and%20precipitation%20in%20Cu%E2%80%93Co%E2%80%93Si%20alloy%20during%20hot%20deformation&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Geng,%20Yongfeng&rft.date=2020-04-25&rft.volume=821&rft.spage=153518&rft.pages=153518-&rft.artnum=153518&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.153518&rft_dat=%3Cproquest_cross%3E2376730661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730661&rft_id=info:pmid/&rft_els_id=S0925838819347644&rfr_iscdi=true