Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks

The five-axis machining center and mill-turn lathe are some of the modern machining technologies widely used around the world. The spindle of the mill-turn lathe is the power source for cutting and milling. The spindle often spins at 2000 rpm or more for higher milling accuracy and efficiency. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2020-01, Vol.32 (3), p.859
Hauptverfasser: Chen, Shao-Hsien, Huang, Wun-Syuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 859
container_title Sensors and materials
container_volume 32
creator Chen, Shao-Hsien
Huang, Wun-Syuan
description The five-axis machining center and mill-turn lathe are some of the modern machining technologies widely used around the world. The spindle of the mill-turn lathe is the power source for cutting and milling. The spindle often spins at 2000 rpm or more for higher milling accuracy and efficiency. However, as the rotation speed increases, so does the temperature and, thus, the accuracy deteriorates and the number of errors increases. As a result, it is important to measure and predict the thermal deformation in the spindle of the mill-turn lathe. For this study, temperature was measured at various points on the spindle. The deformation was measured using a gantry-type main axis. The temperature increase and deformation measurements were analyzed, and the results were used for the prediction using the backpropagation of an artificial neural network. From this, the machining accuracy can be improved by refining the structure design or compensation. The largest temperature increase was found to be 8 °C. The maximum deformations were 0.026 mm for the X-axis, 0.004 mm for the Y-axis, and −0.069 mm for the Z-axis.
doi_str_mv 10.18494/SAM.2020.2598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376730501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376730501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-baa0df7b83c021362a0c79453d25f18eb5a08f4df632d3af5f1e53ef5c9ca3e53</originalsourceid><addsrcrecordid>eNo1kEtPwzAQhH0Aiar0ytkS54S1HedxrMpTaguC9Gw5jk1d0rjYiRD_HpfCaUej2Vnth9AVgZSUWZXdvM1XKQUKKeVVeYYmUJEsySrGL9AshB0AkJJDTvMJ0i9et1YN1vXYGVxvtd_LDt9q46L4t1_dIP03rmXTaWx7vBq7wZqxP-2tpNraXuPauQ5vgu3f8VqPPtas9fDl_Ee4ROdGdkHP_uYUbe7v6sVjsnx-eFrMl4liBRuSRkpoTdGUTAElLKcSVFFlnLWUG1LqhksoTdaanNGWSRNNzZk2XFVKsiin6PrUe_Duc9RhEDs3-j6eFJQVecGAA4mp9JRS3oXgtREHb_fxQUFA_BIUkaA4EhRHguwHOQVmbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730501</pqid></control><display><type>article</type><title>Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Shao-Hsien ; Huang, Wun-Syuan</creator><creatorcontrib>Chen, Shao-Hsien ; Huang, Wun-Syuan</creatorcontrib><description>The five-axis machining center and mill-turn lathe are some of the modern machining technologies widely used around the world. The spindle of the mill-turn lathe is the power source for cutting and milling. The spindle often spins at 2000 rpm or more for higher milling accuracy and efficiency. However, as the rotation speed increases, so does the temperature and, thus, the accuracy deteriorates and the number of errors increases. As a result, it is important to measure and predict the thermal deformation in the spindle of the mill-turn lathe. For this study, temperature was measured at various points on the spindle. The deformation was measured using a gantry-type main axis. The temperature increase and deformation measurements were analyzed, and the results were used for the prediction using the backpropagation of an artificial neural network. From this, the machining accuracy can be improved by refining the structure design or compensation. The largest temperature increase was found to be 8 °C. The maximum deformations were 0.026 mm for the X-axis, 0.004 mm for the Y-axis, and −0.069 mm for the Z-axis.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2020.2598</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Accuracy ; Artificial neural networks ; Back propagation ; Deformation ; Deformation analysis ; Five axis ; Machine shops ; Machine tools ; Machining centres ; Milling (machining) ; Motion systems ; Neural networks</subject><ispartof>Sensors and materials, 2020-01, Vol.32 (3), p.859</ispartof><rights>Copyright MYU Scientific Publishing Division 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-baa0df7b83c021362a0c79453d25f18eb5a08f4df632d3af5f1e53ef5c9ca3e53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, Shao-Hsien</creatorcontrib><creatorcontrib>Huang, Wun-Syuan</creatorcontrib><title>Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks</title><title>Sensors and materials</title><description>The five-axis machining center and mill-turn lathe are some of the modern machining technologies widely used around the world. The spindle of the mill-turn lathe is the power source for cutting and milling. The spindle often spins at 2000 rpm or more for higher milling accuracy and efficiency. However, as the rotation speed increases, so does the temperature and, thus, the accuracy deteriorates and the number of errors increases. As a result, it is important to measure and predict the thermal deformation in the spindle of the mill-turn lathe. For this study, temperature was measured at various points on the spindle. The deformation was measured using a gantry-type main axis. The temperature increase and deformation measurements were analyzed, and the results were used for the prediction using the backpropagation of an artificial neural network. From this, the machining accuracy can be improved by refining the structure design or compensation. The largest temperature increase was found to be 8 °C. The maximum deformations were 0.026 mm for the X-axis, 0.004 mm for the Y-axis, and −0.069 mm for the Z-axis.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Five axis</subject><subject>Machine shops</subject><subject>Machine tools</subject><subject>Machining centres</subject><subject>Milling (machining)</subject><subject>Motion systems</subject><subject>Neural networks</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1kEtPwzAQhH0Aiar0ytkS54S1HedxrMpTaguC9Gw5jk1d0rjYiRD_HpfCaUej2Vnth9AVgZSUWZXdvM1XKQUKKeVVeYYmUJEsySrGL9AshB0AkJJDTvMJ0i9et1YN1vXYGVxvtd_LDt9q46L4t1_dIP03rmXTaWx7vBq7wZqxP-2tpNraXuPauQ5vgu3f8VqPPtas9fDl_Ee4ROdGdkHP_uYUbe7v6sVjsnx-eFrMl4liBRuSRkpoTdGUTAElLKcSVFFlnLWUG1LqhksoTdaanNGWSRNNzZk2XFVKsiin6PrUe_Duc9RhEDs3-j6eFJQVecGAA4mp9JRS3oXgtREHb_fxQUFA_BIUkaA4EhRHguwHOQVmbA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Shao-Hsien</creator><creator>Huang, Wun-Syuan</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200101</creationdate><title>Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks</title><author>Chen, Shao-Hsien ; Huang, Wun-Syuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-baa0df7b83c021362a0c79453d25f18eb5a08f4df632d3af5f1e53ef5c9ca3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Five axis</topic><topic>Machine shops</topic><topic>Machine tools</topic><topic>Machining centres</topic><topic>Milling (machining)</topic><topic>Motion systems</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shao-Hsien</creatorcontrib><creatorcontrib>Huang, Wun-Syuan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shao-Hsien</au><au>Huang, Wun-Syuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks</atitle><jtitle>Sensors and materials</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>859</spage><pages>859-</pages><issn>0914-4935</issn><abstract>The five-axis machining center and mill-turn lathe are some of the modern machining technologies widely used around the world. The spindle of the mill-turn lathe is the power source for cutting and milling. The spindle often spins at 2000 rpm or more for higher milling accuracy and efficiency. However, as the rotation speed increases, so does the temperature and, thus, the accuracy deteriorates and the number of errors increases. As a result, it is important to measure and predict the thermal deformation in the spindle of the mill-turn lathe. For this study, temperature was measured at various points on the spindle. The deformation was measured using a gantry-type main axis. The temperature increase and deformation measurements were analyzed, and the results were used for the prediction using the backpropagation of an artificial neural network. From this, the machining accuracy can be improved by refining the structure design or compensation. The largest temperature increase was found to be 8 °C. The maximum deformations were 0.026 mm for the X-axis, 0.004 mm for the Y-axis, and −0.069 mm for the Z-axis.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2020.2598</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2020-01, Vol.32 (3), p.859
issn 0914-4935
language eng
recordid cdi_proquest_journals_2376730501
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Artificial neural networks
Back propagation
Deformation
Deformation analysis
Five axis
Machine shops
Machine tools
Machining centres
Milling (machining)
Motion systems
Neural networks
title Prediction of Thermal Deformation of Rotary Table in Multifunction Machine Tool Using Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Thermal%20Deformation%20of%20Rotary%20Table%20in%20Multifunction%20Machine%20Tool%20Using%20Neural%20Networks&rft.jtitle=Sensors%20and%20materials&rft.au=Chen,%20Shao-Hsien&rft.date=2020-01-01&rft.volume=32&rft.issue=3&rft.spage=859&rft.pages=859-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2020.2598&rft_dat=%3Cproquest_cross%3E2376730501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730501&rft_id=info:pmid/&rfr_iscdi=true