Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid
The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site st...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2020-03, Vol.119, p.103382, Article 103382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103382 |
container_title | Computers and geotechnics |
container_volume | 119 |
creator | Tounsi, H. Rouabhi, A. Jahangir, E. |
description | The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media. |
doi_str_mv | 10.1016/j.compgeo.2019.103382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376730428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X1930446X</els_id><sourcerecordid>2376730428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVJoJs0H6Fg6CkUb_XHluRTCEvbFBZ6SSA3oZVGa21tayvLCdtPXxkvubankd683zDMQ-gjwWuCCf9yWJvQH_cQ1hSTJmuMSfoOrYgUrBScsQu0wpTzktX0-T26GscDzlwjmxV6fWwh9qFsTzaGsgfT6sEb3RV9sND5YV8EV-iYvPPGZ3kfwzTYwkWAP3M36V9z8UMKhTYmN1ORWihGnWGfTjO-_NMUdZq9rpu8_YAune5GuDnXa_T07evj5qHc_vz-Y3O_LU1FZCoFVA04bHeMSuG0NKamUBsHtRaacVIxbRtuNCUcyA5zy3YSY2YMrUQNGtg1ul3mtrpTx-h7HU8qaK8e7rdq1jCtqMBN80Ky99PiPcbwe4IxqUOY4pDXU5QJLhiuqMyuenGZGMYxgnsbS7Ca81AHdc5DzXmoJY_MfV64V9gFNxoPg4E3FmNcE8E5I_lFm-yW_-_e-JRPG4bNfP6M3i0o5Lu-eIjqjFsfwSRlg__Hqn8BIJW5EA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730428</pqid></control><display><type>article</type><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</creator><creatorcontrib>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</creatorcontrib><description>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2019.103382</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Artificial ground freezing ; Capillary pressure ; Civil Engineering ; Computation ; Computer Science ; Computer Science, Interdisciplinary Applications ; Engineering ; Engineering Sciences ; Engineering, Geological ; Freezing ; Geology ; Geosciences, Multidisciplinary ; Geotechnical engineering ; Ground freezing ; Groundwater ; Heterogeneity ; Hydraulic models ; Laboratory tests ; Latent heat ; Materials ; Mathematical models ; Modelling ; Numerical modeling ; Phase change ; Physical Sciences ; Porous media ; Predictions ; Saline groundwater ; Salinity ; Salinity effects ; Science & Technology ; Seepage ; Sodium ; Sodium chloride ; Stability ; Stress-free laboratory freezing tests ; Technology ; THMC coupling</subject><ispartof>Computers and geotechnics, 2020-03, Vol.119, p.103382, Article 103382</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>52</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000517663100029</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</citedby><cites>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</cites><orcidid>0000-0002-2255-9273 ; 0000-0002-7557-0273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2019.103382$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02427099$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tounsi, H.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Jahangir, E.</creatorcontrib><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><title>Computers and geotechnics</title><addtitle>COMPUT GEOTECH</addtitle><description>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</description><subject>Artificial ground freezing</subject><subject>Capillary pressure</subject><subject>Civil Engineering</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Engineering, Geological</subject><subject>Freezing</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Geotechnical engineering</subject><subject>Ground freezing</subject><subject>Groundwater</subject><subject>Heterogeneity</subject><subject>Hydraulic models</subject><subject>Laboratory tests</subject><subject>Latent heat</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical modeling</subject><subject>Phase change</subject><subject>Physical Sciences</subject><subject>Porous media</subject><subject>Predictions</subject><subject>Saline groundwater</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Science & Technology</subject><subject>Seepage</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Stress-free laboratory freezing tests</subject><subject>Technology</subject><subject>THMC coupling</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU9r3DAQxUVJoJs0H6Fg6CkUb_XHluRTCEvbFBZ6SSA3oZVGa21tayvLCdtPXxkvubankd683zDMQ-gjwWuCCf9yWJvQH_cQ1hSTJmuMSfoOrYgUrBScsQu0wpTzktX0-T26GscDzlwjmxV6fWwh9qFsTzaGsgfT6sEb3RV9sND5YV8EV-iYvPPGZ3kfwzTYwkWAP3M36V9z8UMKhTYmN1ORWihGnWGfTjO-_NMUdZq9rpu8_YAune5GuDnXa_T07evj5qHc_vz-Y3O_LU1FZCoFVA04bHeMSuG0NKamUBsHtRaacVIxbRtuNCUcyA5zy3YSY2YMrUQNGtg1ul3mtrpTx-h7HU8qaK8e7rdq1jCtqMBN80Ky99PiPcbwe4IxqUOY4pDXU5QJLhiuqMyuenGZGMYxgnsbS7Ca81AHdc5DzXmoJY_MfV64V9gFNxoPg4E3FmNcE8E5I_lFm-yW_-_e-JRPG4bNfP6M3i0o5Lu-eIjqjFsfwSRlg__Hqn8BIJW5EA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Tounsi, H.</creator><creator>Rouabhi, A.</creator><creator>Jahangir, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2255-9273</orcidid><orcidid>https://orcid.org/0000-0002-7557-0273</orcidid></search><sort><creationdate>202003</creationdate><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><author>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial ground freezing</topic><topic>Capillary pressure</topic><topic>Civil Engineering</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Engineering, Geological</topic><topic>Freezing</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Geotechnical engineering</topic><topic>Ground freezing</topic><topic>Groundwater</topic><topic>Heterogeneity</topic><topic>Hydraulic models</topic><topic>Laboratory tests</topic><topic>Latent heat</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical modeling</topic><topic>Phase change</topic><topic>Physical Sciences</topic><topic>Porous media</topic><topic>Predictions</topic><topic>Saline groundwater</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Science & Technology</topic><topic>Seepage</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Stress-free laboratory freezing tests</topic><topic>Technology</topic><topic>THMC coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tounsi, H.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Jahangir, E.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tounsi, H.</au><au>Rouabhi, A.</au><au>Jahangir, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</atitle><jtitle>Computers and geotechnics</jtitle><stitle>COMPUT GEOTECH</stitle><date>2020-03</date><risdate>2020</risdate><volume>119</volume><spage>103382</spage><pages>103382-</pages><artnum>103382</artnum><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2019.103382</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2255-9273</orcidid><orcidid>https://orcid.org/0000-0002-7557-0273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-352X |
ispartof | Computers and geotechnics, 2020-03, Vol.119, p.103382, Article 103382 |
issn | 0266-352X 1873-7633 |
language | eng |
recordid | cdi_proquest_journals_2376730428 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Artificial ground freezing Capillary pressure Civil Engineering Computation Computer Science Computer Science, Interdisciplinary Applications Engineering Engineering Sciences Engineering, Geological Freezing Geology Geosciences, Multidisciplinary Geotechnical engineering Ground freezing Groundwater Heterogeneity Hydraulic models Laboratory tests Latent heat Materials Mathematical models Modelling Numerical modeling Phase change Physical Sciences Porous media Predictions Saline groundwater Salinity Salinity effects Science & Technology Seepage Sodium Sodium chloride Stability Stress-free laboratory freezing tests Technology THMC coupling |
title | Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T19%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-hydro-mechanical%20modeling%20of%20artificial%20ground%20freezing%20taking%20into%20account%20the%20salinity%20of%20the%20saturating%20fluid&rft.jtitle=Computers%20and%20geotechnics&rft.au=Tounsi,%20H.&rft.date=2020-03&rft.volume=119&rft.spage=103382&rft.pages=103382-&rft.artnum=103382&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2019.103382&rft_dat=%3Cproquest_cross%3E2376730428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730428&rft_id=info:pmid/&rft_els_id=S0266352X1930446X&rfr_iscdi=true |