Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid

The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and geotechnics 2020-03, Vol.119, p.103382, Article 103382
Hauptverfasser: Tounsi, H., Rouabhi, A., Jahangir, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103382
container_title Computers and geotechnics
container_volume 119
creator Tounsi, H.
Rouabhi, A.
Jahangir, E.
description The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.
doi_str_mv 10.1016/j.compgeo.2019.103382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376730428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X1930446X</els_id><sourcerecordid>2376730428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVJoJs0H6Fg6CkUb_XHluRTCEvbFBZ6SSA3oZVGa21tayvLCdtPXxkvubankd683zDMQ-gjwWuCCf9yWJvQH_cQ1hSTJmuMSfoOrYgUrBScsQu0wpTzktX0-T26GscDzlwjmxV6fWwh9qFsTzaGsgfT6sEb3RV9sND5YV8EV-iYvPPGZ3kfwzTYwkWAP3M36V9z8UMKhTYmN1ORWihGnWGfTjO-_NMUdZq9rpu8_YAune5GuDnXa_T07evj5qHc_vz-Y3O_LU1FZCoFVA04bHeMSuG0NKamUBsHtRaacVIxbRtuNCUcyA5zy3YSY2YMrUQNGtg1ul3mtrpTx-h7HU8qaK8e7rdq1jCtqMBN80Ky99PiPcbwe4IxqUOY4pDXU5QJLhiuqMyuenGZGMYxgnsbS7Ca81AHdc5DzXmoJY_MfV64V9gFNxoPg4E3FmNcE8E5I_lFm-yW_-_e-JRPG4bNfP6M3i0o5Lu-eIjqjFsfwSRlg__Hqn8BIJW5EA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730428</pqid></control><display><type>article</type><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</creator><creatorcontrib>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</creatorcontrib><description>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2019.103382</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Artificial ground freezing ; Capillary pressure ; Civil Engineering ; Computation ; Computer Science ; Computer Science, Interdisciplinary Applications ; Engineering ; Engineering Sciences ; Engineering, Geological ; Freezing ; Geology ; Geosciences, Multidisciplinary ; Geotechnical engineering ; Ground freezing ; Groundwater ; Heterogeneity ; Hydraulic models ; Laboratory tests ; Latent heat ; Materials ; Mathematical models ; Modelling ; Numerical modeling ; Phase change ; Physical Sciences ; Porous media ; Predictions ; Saline groundwater ; Salinity ; Salinity effects ; Science &amp; Technology ; Seepage ; Sodium ; Sodium chloride ; Stability ; Stress-free laboratory freezing tests ; Technology ; THMC coupling</subject><ispartof>Computers and geotechnics, 2020-03, Vol.119, p.103382, Article 103382</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>52</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000517663100029</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</citedby><cites>FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</cites><orcidid>0000-0002-2255-9273 ; 0000-0002-7557-0273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compgeo.2019.103382$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02427099$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tounsi, H.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Jahangir, E.</creatorcontrib><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><title>Computers and geotechnics</title><addtitle>COMPUT GEOTECH</addtitle><description>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</description><subject>Artificial ground freezing</subject><subject>Capillary pressure</subject><subject>Civil Engineering</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Engineering, Geological</subject><subject>Freezing</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Geotechnical engineering</subject><subject>Ground freezing</subject><subject>Groundwater</subject><subject>Heterogeneity</subject><subject>Hydraulic models</subject><subject>Laboratory tests</subject><subject>Latent heat</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical modeling</subject><subject>Phase change</subject><subject>Physical Sciences</subject><subject>Porous media</subject><subject>Predictions</subject><subject>Saline groundwater</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Science &amp; Technology</subject><subject>Seepage</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Stability</subject><subject>Stress-free laboratory freezing tests</subject><subject>Technology</subject><subject>THMC coupling</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU9r3DAQxUVJoJs0H6Fg6CkUb_XHluRTCEvbFBZ6SSA3oZVGa21tayvLCdtPXxkvubankd683zDMQ-gjwWuCCf9yWJvQH_cQ1hSTJmuMSfoOrYgUrBScsQu0wpTzktX0-T26GscDzlwjmxV6fWwh9qFsTzaGsgfT6sEb3RV9sND5YV8EV-iYvPPGZ3kfwzTYwkWAP3M36V9z8UMKhTYmN1ORWihGnWGfTjO-_NMUdZq9rpu8_YAune5GuDnXa_T07evj5qHc_vz-Y3O_LU1FZCoFVA04bHeMSuG0NKamUBsHtRaacVIxbRtuNCUcyA5zy3YSY2YMrUQNGtg1ul3mtrpTx-h7HU8qaK8e7rdq1jCtqMBN80Ky99PiPcbwe4IxqUOY4pDXU5QJLhiuqMyuenGZGMYxgnsbS7Ca81AHdc5DzXmoJY_MfV64V9gFNxoPg4E3FmNcE8E5I_lFm-yW_-_e-JRPG4bNfP6M3i0o5Lu-eIjqjFsfwSRlg__Hqn8BIJW5EA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Tounsi, H.</creator><creator>Rouabhi, A.</creator><creator>Jahangir, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2255-9273</orcidid><orcidid>https://orcid.org/0000-0002-7557-0273</orcidid></search><sort><creationdate>202003</creationdate><title>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</title><author>Tounsi, H. ; Rouabhi, A. ; Jahangir, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-7e49ef0db3287fa8cc52e5cfe5a7a36143ad96ca216e1b06d3b8003cc2475eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial ground freezing</topic><topic>Capillary pressure</topic><topic>Civil Engineering</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Engineering, Geological</topic><topic>Freezing</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Geotechnical engineering</topic><topic>Ground freezing</topic><topic>Groundwater</topic><topic>Heterogeneity</topic><topic>Hydraulic models</topic><topic>Laboratory tests</topic><topic>Latent heat</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical modeling</topic><topic>Phase change</topic><topic>Physical Sciences</topic><topic>Porous media</topic><topic>Predictions</topic><topic>Saline groundwater</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Science &amp; Technology</topic><topic>Seepage</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Stability</topic><topic>Stress-free laboratory freezing tests</topic><topic>Technology</topic><topic>THMC coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tounsi, H.</creatorcontrib><creatorcontrib>Rouabhi, A.</creatorcontrib><creatorcontrib>Jahangir, E.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tounsi, H.</au><au>Rouabhi, A.</au><au>Jahangir, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid</atitle><jtitle>Computers and geotechnics</jtitle><stitle>COMPUT GEOTECH</stitle><date>2020-03</date><risdate>2020</risdate><volume>119</volume><spage>103382</spage><pages>103382-</pages><artnum>103382</artnum><issn>0266-352X</issn><eissn>1873-7633</eissn><abstract>The modeling of Artificial Ground Freezing in geotechnical engineering applications has two main objectives, the first is the prediction of the extent of the frozen zone around the cooling sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s deformations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions require the consideration of unfavorable hydro-geological conditions such as high seepage velocities, ground heterogeneity and saline groundwater that may negatively influence the performance of AGF. The influence of the saturating fluid salinity on the THM behavior of the ground during freezing is the less documented point among the three and is therefore the subject of this paper. To this end, a fully coupled THM model considering the salinity effect has been derived. The formalism is completely thermodynamically consistent and introduces some simplifying assumptions, especially to describe phase change terms (capillary pressure and latent heat), in order to achieve a mathematical formulation that can be easily handled by computation software. Stress-free freezing laboratory tests carried out on specimens initially fully saturated with sodium chloride solutions at three different concentrations allowed to validate the proposed approach and to highlight some key mechanisms associated with the phase change of saline-saturated porous media.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2019.103382</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2255-9273</orcidid><orcidid>https://orcid.org/0000-0002-7557-0273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2020-03, Vol.119, p.103382, Article 103382
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_journals_2376730428
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Artificial ground freezing
Capillary pressure
Civil Engineering
Computation
Computer Science
Computer Science, Interdisciplinary Applications
Engineering
Engineering Sciences
Engineering, Geological
Freezing
Geology
Geosciences, Multidisciplinary
Geotechnical engineering
Ground freezing
Groundwater
Heterogeneity
Hydraulic models
Laboratory tests
Latent heat
Materials
Mathematical models
Modelling
Numerical modeling
Phase change
Physical Sciences
Porous media
Predictions
Saline groundwater
Salinity
Salinity effects
Science & Technology
Seepage
Sodium
Sodium chloride
Stability
Stress-free laboratory freezing tests
Technology
THMC coupling
title Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T19%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-hydro-mechanical%20modeling%20of%20artificial%20ground%20freezing%20taking%20into%20account%20the%20salinity%20of%20the%20saturating%20fluid&rft.jtitle=Computers%20and%20geotechnics&rft.au=Tounsi,%20H.&rft.date=2020-03&rft.volume=119&rft.spage=103382&rft.pages=103382-&rft.artnum=103382&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2019.103382&rft_dat=%3Cproquest_cross%3E2376730428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730428&rft_id=info:pmid/&rft_els_id=S0266352X1930446X&rfr_iscdi=true