Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material

Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2020-03, Vol.44 (4), p.3192-3202
Hauptverfasser: Obodo, Raphael M., Nwanya, Assumpta C., Arshad, Muhammad, Iroegbu, Chinedu, Ahmad, Ishaq, Osuji, Rose U., Maaza, Malik, Ezema, Fabian I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3202
container_issue 4
container_start_page 3192
container_title International journal of energy research
container_volume 44
creator Obodo, Raphael M.
Nwanya, Assumpta C.
Arshad, Muhammad
Iroegbu, Chinedu
Ahmad, Ishaq
Osuji, Rose U.
Maaza, Malik
Ezema, Fabian I.
description Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.
doi_str_mv 10.1002/er.5091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376536761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376536761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdv80m-QopVahGJAeipdls5nIljS77iaU3nwEn9EncWu9eprD9-ObYRC6puSeEsIm4O9TUtATNKKkKBJKp-tTNCJc8KQg2focXYSwISRmNBshPbPdZnhXPdT4xZTfn19vXTlZlLhTndV262wwPWBndzV43FiPlXOt0ao3tgvYdDgMDrxWTmnTxxha0L23NQS8ja3eqPYSnTWqDXD1N8do9ThfzZ6SZbl4nj0sE80FpYkuUl5RAQIY5I1qKGNVvJrmlWp4kbGaVZoxlqc81RnkeV0Q1UwjEFVR5YKP0c2x1nn7MUDo5cYOvosbJeOZSLnIBI3q9qi0tyF4aKTzZqv8XlIiDw-U4OXhgVHeHeXOtLD_j8n566_-Afqjclg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376536761</pqid></control><display><type>article</type><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</creator><creatorcontrib>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</creatorcontrib><description>Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5091</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Analytical methods ; Capacitance ; Charge transfer ; Chemical composition ; co‐precipitation ; Crystallography ; electrochemical ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron microscopy ; Energy ; Energy gap ; Fluorine ; Graphene ; graphene oxide ; Heavy metals ; Metal oxides ; Morphology ; Nanocomposites ; Nickel oxides ; Nyquist plots ; optical ; Quartzite ; Scanning electron microscopy ; Sodium sulfate ; Spectroscopy ; Substrates ; supercapacitor ; Supercapacitors ; Synthesis ; Thin films ; Tin ; Tin oxide ; Tin oxides ; Transition metal oxides ; Zinc oxide</subject><ispartof>International journal of energy research, 2020-03, Vol.44 (4), p.3192-3202</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</citedby><cites>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</cites><orcidid>0000-0003-2756-4095 ; 0000-0002-4633-1417 ; 0000-0001-7418-8526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Obodo, Raphael M.</creatorcontrib><creatorcontrib>Nwanya, Assumpta C.</creatorcontrib><creatorcontrib>Arshad, Muhammad</creatorcontrib><creatorcontrib>Iroegbu, Chinedu</creatorcontrib><creatorcontrib>Ahmad, Ishaq</creatorcontrib><creatorcontrib>Osuji, Rose U.</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Ezema, Fabian I.</creatorcontrib><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><title>International journal of energy research</title><description>Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</description><subject>Analytical methods</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Chemical composition</subject><subject>co‐precipitation</subject><subject>Crystallography</subject><subject>electrochemical</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Fluorine</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Heavy metals</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nickel oxides</subject><subject>Nyquist plots</subject><subject>optical</subject><subject>Quartzite</subject><subject>Scanning electron microscopy</subject><subject>Sodium sulfate</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><subject>Transition metal oxides</subject><subject>Zinc oxide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdv80m-QopVahGJAeipdls5nIljS77iaU3nwEn9EncWu9eprD9-ObYRC6puSeEsIm4O9TUtATNKKkKBJKp-tTNCJc8KQg2focXYSwISRmNBshPbPdZnhXPdT4xZTfn19vXTlZlLhTndV262wwPWBndzV43FiPlXOt0ao3tgvYdDgMDrxWTmnTxxha0L23NQS8ja3eqPYSnTWqDXD1N8do9ThfzZ6SZbl4nj0sE80FpYkuUl5RAQIY5I1qKGNVvJrmlWp4kbGaVZoxlqc81RnkeV0Q1UwjEFVR5YKP0c2x1nn7MUDo5cYOvosbJeOZSLnIBI3q9qi0tyF4aKTzZqv8XlIiDw-U4OXhgVHeHeXOtLD_j8n566_-Afqjclg</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Obodo, Raphael M.</creator><creator>Nwanya, Assumpta C.</creator><creator>Arshad, Muhammad</creator><creator>Iroegbu, Chinedu</creator><creator>Ahmad, Ishaq</creator><creator>Osuji, Rose U.</creator><creator>Maaza, Malik</creator><creator>Ezema, Fabian I.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2756-4095</orcidid><orcidid>https://orcid.org/0000-0002-4633-1417</orcidid><orcidid>https://orcid.org/0000-0001-7418-8526</orcidid></search><sort><creationdate>20200325</creationdate><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><author>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Chemical composition</topic><topic>co‐precipitation</topic><topic>Crystallography</topic><topic>electrochemical</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Fluorine</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Heavy metals</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nickel oxides</topic><topic>Nyquist plots</topic><topic>optical</topic><topic>Quartzite</topic><topic>Scanning electron microscopy</topic><topic>Sodium sulfate</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><topic>Transition metal oxides</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obodo, Raphael M.</creatorcontrib><creatorcontrib>Nwanya, Assumpta C.</creatorcontrib><creatorcontrib>Arshad, Muhammad</creatorcontrib><creatorcontrib>Iroegbu, Chinedu</creatorcontrib><creatorcontrib>Ahmad, Ishaq</creatorcontrib><creatorcontrib>Osuji, Rose U.</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Ezema, Fabian I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obodo, Raphael M.</au><au>Nwanya, Assumpta C.</au><au>Arshad, Muhammad</au><au>Iroegbu, Chinedu</au><au>Ahmad, Ishaq</au><au>Osuji, Rose U.</au><au>Maaza, Malik</au><au>Ezema, Fabian I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</atitle><jtitle>International journal of energy research</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>44</volume><issue>4</issue><spage>3192</spage><epage>3202</epage><pages>3192-3202</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.5091</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2756-4095</orcidid><orcidid>https://orcid.org/0000-0002-4633-1417</orcidid><orcidid>https://orcid.org/0000-0001-7418-8526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2020-03, Vol.44 (4), p.3192-3202
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2376536761
source Wiley Online Library - AutoHoldings Journals
subjects Analytical methods
Capacitance
Charge transfer
Chemical composition
co‐precipitation
Crystallography
electrochemical
Electrochemical analysis
Electrochemistry
Electrodes
Electron microscopy
Energy
Energy gap
Fluorine
Graphene
graphene oxide
Heavy metals
Metal oxides
Morphology
Nanocomposites
Nickel oxides
Nyquist plots
optical
Quartzite
Scanning electron microscopy
Sodium sulfate
Spectroscopy
Substrates
supercapacitor
Supercapacitors
Synthesis
Thin films
Tin
Tin oxide
Tin oxides
Transition metal oxides
Zinc oxide
title Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20NiO%E2%80%90ZnO/GO%20nanocomposite%20powder%20for%20applications%20in%20supercapacitor%20electrodes%20material&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Obodo,%20Raphael%20M.&rft.date=2020-03-25&rft.volume=44&rft.issue=4&rft.spage=3192&rft.epage=3202&rft.pages=3192-3202&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5091&rft_dat=%3Cproquest_cross%3E2376536761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376536761&rft_id=info:pmid/&rfr_iscdi=true