Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material
Summary The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2020-03, Vol.44 (4), p.3192-3202 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3202 |
---|---|
container_issue | 4 |
container_start_page | 3192 |
container_title | International journal of energy research |
container_volume | 44 |
creator | Obodo, Raphael M. Nwanya, Assumpta C. Arshad, Muhammad Iroegbu, Chinedu Ahmad, Ishaq Osuji, Rose U. Maaza, Malik Ezema, Fabian I. |
description | Summary
The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor. |
doi_str_mv | 10.1002/er.5091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376536761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376536761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</originalsourceid><addsrcrecordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdv80m-QopVahGJAeipdls5nIljS77iaU3nwEn9EncWu9eprD9-ObYRC6puSeEsIm4O9TUtATNKKkKBJKp-tTNCJc8KQg2focXYSwISRmNBshPbPdZnhXPdT4xZTfn19vXTlZlLhTndV262wwPWBndzV43FiPlXOt0ao3tgvYdDgMDrxWTmnTxxha0L23NQS8ja3eqPYSnTWqDXD1N8do9ThfzZ6SZbl4nj0sE80FpYkuUl5RAQIY5I1qKGNVvJrmlWp4kbGaVZoxlqc81RnkeV0Q1UwjEFVR5YKP0c2x1nn7MUDo5cYOvosbJeOZSLnIBI3q9qi0tyF4aKTzZqv8XlIiDw-U4OXhgVHeHeXOtLD_j8n566_-Afqjclg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376536761</pqid></control><display><type>article</type><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</creator><creatorcontrib>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</creatorcontrib><description>Summary
The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5091</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Analytical methods ; Capacitance ; Charge transfer ; Chemical composition ; co‐precipitation ; Crystallography ; electrochemical ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electron microscopy ; Energy ; Energy gap ; Fluorine ; Graphene ; graphene oxide ; Heavy metals ; Metal oxides ; Morphology ; Nanocomposites ; Nickel oxides ; Nyquist plots ; optical ; Quartzite ; Scanning electron microscopy ; Sodium sulfate ; Spectroscopy ; Substrates ; supercapacitor ; Supercapacitors ; Synthesis ; Thin films ; Tin ; Tin oxide ; Tin oxides ; Transition metal oxides ; Zinc oxide</subject><ispartof>International journal of energy research, 2020-03, Vol.44 (4), p.3192-3202</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</citedby><cites>FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</cites><orcidid>0000-0003-2756-4095 ; 0000-0002-4633-1417 ; 0000-0001-7418-8526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Obodo, Raphael M.</creatorcontrib><creatorcontrib>Nwanya, Assumpta C.</creatorcontrib><creatorcontrib>Arshad, Muhammad</creatorcontrib><creatorcontrib>Iroegbu, Chinedu</creatorcontrib><creatorcontrib>Ahmad, Ishaq</creatorcontrib><creatorcontrib>Osuji, Rose U.</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Ezema, Fabian I.</creatorcontrib><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><title>International journal of energy research</title><description>Summary
The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</description><subject>Analytical methods</subject><subject>Capacitance</subject><subject>Charge transfer</subject><subject>Chemical composition</subject><subject>co‐precipitation</subject><subject>Crystallography</subject><subject>electrochemical</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Fluorine</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Heavy metals</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nickel oxides</subject><subject>Nyquist plots</subject><subject>optical</subject><subject>Quartzite</subject><subject>Scanning electron microscopy</subject><subject>Sodium sulfate</subject><subject>Spectroscopy</subject><subject>Substrates</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><subject>Transition metal oxides</subject><subject>Zinc oxide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M9Kw0AQBvBFFKxVfIUFDx4kdv80m-QopVahGJAeipdls5nIljS77iaU3nwEn9EncWu9eprD9-ObYRC6puSeEsIm4O9TUtATNKKkKBJKp-tTNCJc8KQg2focXYSwISRmNBshPbPdZnhXPdT4xZTfn19vXTlZlLhTndV262wwPWBndzV43FiPlXOt0ao3tgvYdDgMDrxWTmnTxxha0L23NQS8ja3eqPYSnTWqDXD1N8do9ThfzZ6SZbl4nj0sE80FpYkuUl5RAQIY5I1qKGNVvJrmlWp4kbGaVZoxlqc81RnkeV0Q1UwjEFVR5YKP0c2x1nn7MUDo5cYOvosbJeOZSLnIBI3q9qi0tyF4aKTzZqv8XlIiDw-U4OXhgVHeHeXOtLD_j8n566_-Afqjclg</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Obodo, Raphael M.</creator><creator>Nwanya, Assumpta C.</creator><creator>Arshad, Muhammad</creator><creator>Iroegbu, Chinedu</creator><creator>Ahmad, Ishaq</creator><creator>Osuji, Rose U.</creator><creator>Maaza, Malik</creator><creator>Ezema, Fabian I.</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2756-4095</orcidid><orcidid>https://orcid.org/0000-0002-4633-1417</orcidid><orcidid>https://orcid.org/0000-0001-7418-8526</orcidid></search><sort><creationdate>20200325</creationdate><title>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</title><author>Obodo, Raphael M. ; Nwanya, Assumpta C. ; Arshad, Muhammad ; Iroegbu, Chinedu ; Ahmad, Ishaq ; Osuji, Rose U. ; Maaza, Malik ; Ezema, Fabian I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3611-c953b16e6e2e8faf122b36318baf3972d2bc2228535c7e88d90af46316b9b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Capacitance</topic><topic>Charge transfer</topic><topic>Chemical composition</topic><topic>co‐precipitation</topic><topic>Crystallography</topic><topic>electrochemical</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Fluorine</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Heavy metals</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nickel oxides</topic><topic>Nyquist plots</topic><topic>optical</topic><topic>Quartzite</topic><topic>Scanning electron microscopy</topic><topic>Sodium sulfate</topic><topic>Spectroscopy</topic><topic>Substrates</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><topic>Transition metal oxides</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obodo, Raphael M.</creatorcontrib><creatorcontrib>Nwanya, Assumpta C.</creatorcontrib><creatorcontrib>Arshad, Muhammad</creatorcontrib><creatorcontrib>Iroegbu, Chinedu</creatorcontrib><creatorcontrib>Ahmad, Ishaq</creatorcontrib><creatorcontrib>Osuji, Rose U.</creatorcontrib><creatorcontrib>Maaza, Malik</creatorcontrib><creatorcontrib>Ezema, Fabian I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obodo, Raphael M.</au><au>Nwanya, Assumpta C.</au><au>Arshad, Muhammad</au><au>Iroegbu, Chinedu</au><au>Ahmad, Ishaq</au><au>Osuji, Rose U.</au><au>Maaza, Malik</au><au>Ezema, Fabian I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material</atitle><jtitle>International journal of energy research</jtitle><date>2020-03-25</date><risdate>2020</risdate><volume>44</volume><issue>4</issue><spage>3192</spage><epage>3202</epage><pages>3192-3202</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
The nanocomposite of NiO‐ZnO/graphene oxide (GO) was synthesized for applications in supercapacitor electrodes material. GO was produced using the modified Hummers' method, and the nanocomposite of NiO‐ZnO/GO was synthesized using the co‐precipitation method. Thin films of nanocomposite powder were deposited on quartzite (glass) and fluorine‐doped tin oxide substrates by a drop casting technique. X‐ray diffraction revealed the crystallographic information of NiO‐ZnO/GO nanocomposites. The surface morphology and elemental composition were studied using a scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The electrochemical properties were examined using cyclic voltammetry in a 1.0 M solution of Na2SO4 electrolyte with a three‐electrode system. Moreover, the NiO‐ZnO/GO binary metal oxides nanocomposite based electrodes fabricated for supercapacitor delivered a high specific capacitance of 1690 F g−1 for 1:1/GO sample at a scan rate of 10 mV s−1 and has excellent conductivity due to reduced band gap energy range of 1.52‐1.79 eV and with electrodes resistance of 0.02 Ω. The absence of semicircle in the Nyquist plot denotes low charge transfer resistance of the electrodes. The highest energy densities obtained for 1:1/GO and 2:1/GO are 192 and 148 Wh kg−1, respectively, while the highest power density obtained for 1:1/GO and 2:1/GO are 8.46 and 7.42 W kg−1, respectively. Our study paves way for a facile, affordable, nontoxic, and fast way to synthesis binary transition metal oxides/GO‐based electrodes material for high‐performance supercapacitor.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1002/er.5091</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2756-4095</orcidid><orcidid>https://orcid.org/0000-0002-4633-1417</orcidid><orcidid>https://orcid.org/0000-0001-7418-8526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2020-03, Vol.44 (4), p.3192-3202 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2376536761 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Analytical methods Capacitance Charge transfer Chemical composition co‐precipitation Crystallography electrochemical Electrochemical analysis Electrochemistry Electrodes Electron microscopy Energy Energy gap Fluorine Graphene graphene oxide Heavy metals Metal oxides Morphology Nanocomposites Nickel oxides Nyquist plots optical Quartzite Scanning electron microscopy Sodium sulfate Spectroscopy Substrates supercapacitor Supercapacitors Synthesis Thin films Tin Tin oxide Tin oxides Transition metal oxides Zinc oxide |
title | Conjugated NiO‐ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugated%20NiO%E2%80%90ZnO/GO%20nanocomposite%20powder%20for%20applications%20in%20supercapacitor%20electrodes%20material&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Obodo,%20Raphael%20M.&rft.date=2020-03-25&rft.volume=44&rft.issue=4&rft.spage=3192&rft.epage=3202&rft.pages=3192-3202&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5091&rft_dat=%3Cproquest_cross%3E2376536761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376536761&rft_id=info:pmid/&rfr_iscdi=true |