Semi-supervised dimensionality reduction via sparse locality preserving projection
The dimensionality reduction of the unbalanced semi-supervised problem is difficult because there are too few labeled samples. In this paper, we propose a new dimensionality reduction method for the unbalanced semi-supervised problem, called sparse locality preserving projection (SLPP for short). In...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-04, Vol.50 (4), p.1222-1232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 4 |
container_start_page | 1222 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 50 |
creator | Guo, Huijie Zou, Hui Tan, Junyan |
description | The dimensionality reduction of the unbalanced semi-supervised problem is difficult because there are too few labeled samples. In this paper, we propose a new dimensionality reduction method for the unbalanced semi-supervised problem, called sparse locality preserving projection (SLPP for short). In the past work of solving the semi-supervised dimensionality reduction problems, they either abandon some unlabeled samples or do not utilize the implicit discriminant information of unlabeled samples. While, SLPP learns the optimal projection matrix with the full use of the discriminant information and the geometric structure of the unlabeled samples. Here, we preserve the geometric structure of the rest unlabeled samples and their k-nearest neighbors after increasing the number of labeled samples by label propagation. The optimization problem of SLPP can be easily solved by a generalized eigenvalue problem. Results on various data sets from UCI machine learning repository and two hyperspectral data sets demonstrate that SLPP is superior to other conventional reduction methods. |
doi_str_mv | 10.1007/s10489-019-01574-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376523665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376523665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f91283fbd7044551bb3d9181a69e3251295509c1083dfd18b3ca82bc1f3c7923</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpml_oCdDz253JcuyjiX0BYFCH9CbsGU5KCS2q7UD-fsqcaG3HpZ9zcwuw9g1wi0CqDtCyAqdAh5CqizNT9gsFiJVmVanbAaax2Guv87ZBdEaAIQAnLG3d7f1KY29CztPrk5qv3Ut-a4tN37YJ8HVox1im-x8mVBfBnLJprPTtg-ODsR2Fctu7Y7IS3bWlBtyV795zj4fHz4Wz-ny9ellcb9MrUA9pNho5IVoqlpBlkmJVSVqjQWWuXaCS-RaStAWoRB1U2NRCVsWvLLYCKs0F3N2M-nG09-jo8GsuzHEv8lwoXLJRZ7LiOITyoaOKLjG9MFvy7A3CObgnZm8M9E7c_TO5JEkJhJFcLty4U_6H9YPnVtywg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376523665</pqid></control><display><type>article</type><title>Semi-supervised dimensionality reduction via sparse locality preserving projection</title><source>SpringerLink Journals</source><creator>Guo, Huijie ; Zou, Hui ; Tan, Junyan</creator><creatorcontrib>Guo, Huijie ; Zou, Hui ; Tan, Junyan</creatorcontrib><description>The dimensionality reduction of the unbalanced semi-supervised problem is difficult because there are too few labeled samples. In this paper, we propose a new dimensionality reduction method for the unbalanced semi-supervised problem, called sparse locality preserving projection (SLPP for short). In the past work of solving the semi-supervised dimensionality reduction problems, they either abandon some unlabeled samples or do not utilize the implicit discriminant information of unlabeled samples. While, SLPP learns the optimal projection matrix with the full use of the discriminant information and the geometric structure of the unlabeled samples. Here, we preserve the geometric structure of the rest unlabeled samples and their k-nearest neighbors after increasing the number of labeled samples by label propagation. The optimization problem of SLPP can be easily solved by a generalized eigenvalue problem. Results on various data sets from UCI machine learning repository and two hyperspectral data sets demonstrate that SLPP is superior to other conventional reduction methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01574-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Datasets ; Eigenvalues ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Optimization ; Processes ; Projection ; Reduction ; Unbalance</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020-04, Vol.50 (4), p.1222-1232</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Applied Intelligence is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f91283fbd7044551bb3d9181a69e3251295509c1083dfd18b3ca82bc1f3c7923</citedby><cites>FETCH-LOGICAL-c319t-1f91283fbd7044551bb3d9181a69e3251295509c1083dfd18b3ca82bc1f3c7923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01574-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01574-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Huijie</creatorcontrib><creatorcontrib>Zou, Hui</creatorcontrib><creatorcontrib>Tan, Junyan</creatorcontrib><title>Semi-supervised dimensionality reduction via sparse locality preserving projection</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>The dimensionality reduction of the unbalanced semi-supervised problem is difficult because there are too few labeled samples. In this paper, we propose a new dimensionality reduction method for the unbalanced semi-supervised problem, called sparse locality preserving projection (SLPP for short). In the past work of solving the semi-supervised dimensionality reduction problems, they either abandon some unlabeled samples or do not utilize the implicit discriminant information of unlabeled samples. While, SLPP learns the optimal projection matrix with the full use of the discriminant information and the geometric structure of the unlabeled samples. Here, we preserve the geometric structure of the rest unlabeled samples and their k-nearest neighbors after increasing the number of labeled samples by label propagation. The optimization problem of SLPP can be easily solved by a generalized eigenvalue problem. Results on various data sets from UCI machine learning repository and two hyperspectral data sets demonstrate that SLPP is superior to other conventional reduction methods.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Processes</subject><subject>Projection</subject><subject>Reduction</subject><subject>Unbalance</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtqwzAQFKWFpml_oCdDz253JcuyjiX0BYFCH9CbsGU5KCS2q7UD-fsqcaG3HpZ9zcwuw9g1wi0CqDtCyAqdAh5CqizNT9gsFiJVmVanbAaax2Guv87ZBdEaAIQAnLG3d7f1KY29CztPrk5qv3Ut-a4tN37YJ8HVox1im-x8mVBfBnLJprPTtg-ODsR2Fctu7Y7IS3bWlBtyV795zj4fHz4Wz-ny9ellcb9MrUA9pNho5IVoqlpBlkmJVSVqjQWWuXaCS-RaStAWoRB1U2NRCVsWvLLYCKs0F3N2M-nG09-jo8GsuzHEv8lwoXLJRZ7LiOITyoaOKLjG9MFvy7A3CObgnZm8M9E7c_TO5JEkJhJFcLty4U_6H9YPnVtywg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Guo, Huijie</creator><creator>Zou, Hui</creator><creator>Tan, Junyan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Semi-supervised dimensionality reduction via sparse locality preserving projection</title><author>Guo, Huijie ; Zou, Hui ; Tan, Junyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f91283fbd7044551bb3d9181a69e3251295509c1083dfd18b3ca82bc1f3c7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Processes</topic><topic>Projection</topic><topic>Reduction</topic><topic>Unbalance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Huijie</creatorcontrib><creatorcontrib>Zou, Hui</creatorcontrib><creatorcontrib>Tan, Junyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Huijie</au><au>Zou, Hui</au><au>Tan, Junyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised dimensionality reduction via sparse locality preserving projection</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>50</volume><issue>4</issue><spage>1222</spage><epage>1232</epage><pages>1222-1232</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>The dimensionality reduction of the unbalanced semi-supervised problem is difficult because there are too few labeled samples. In this paper, we propose a new dimensionality reduction method for the unbalanced semi-supervised problem, called sparse locality preserving projection (SLPP for short). In the past work of solving the semi-supervised dimensionality reduction problems, they either abandon some unlabeled samples or do not utilize the implicit discriminant information of unlabeled samples. While, SLPP learns the optimal projection matrix with the full use of the discriminant information and the geometric structure of the unlabeled samples. Here, we preserve the geometric structure of the rest unlabeled samples and their k-nearest neighbors after increasing the number of labeled samples by label propagation. The optimization problem of SLPP can be easily solved by a generalized eigenvalue problem. Results on various data sets from UCI machine learning repository and two hyperspectral data sets demonstrate that SLPP is superior to other conventional reduction methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01574-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2020-04, Vol.50 (4), p.1222-1232 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2376523665 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Computer Science Datasets Eigenvalues Machine learning Machines Manufacturing Mechanical Engineering Optimization Processes Projection Reduction Unbalance |
title | Semi-supervised dimensionality reduction via sparse locality preserving projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20dimensionality%20reduction%20via%20sparse%20locality%20preserving%20projection&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Guo,%20Huijie&rft.date=2020-04-01&rft.volume=50&rft.issue=4&rft.spage=1222&rft.epage=1232&rft.pages=1222-1232&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01574-6&rft_dat=%3Cproquest_cross%3E2376523665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376523665&rft_id=info:pmid/&rfr_iscdi=true |