Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis

Arctigenin, a mitochondrial complex I inhibitor, has been identified as a potential anti-tumor agent, but the involved mechanism still remains elusive. Herein, we studied the underlying mechanism(s) of action of arctigenin on acidity-tolerant prostate cancer PC-3AcT cells in the lactic acid-containi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2020-04, Vol.467 (1-2), p.45-56
Hauptverfasser: Lee, Yoon-Jin, Nam, Hae-Seon, Cho, Moon-Kyun, Lee, Sang-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1-2
container_start_page 45
container_title Molecular and cellular biochemistry
container_volume 467
creator Lee, Yoon-Jin
Nam, Hae-Seon
Cho, Moon-Kyun
Lee, Sang-Han
description Arctigenin, a mitochondrial complex I inhibitor, has been identified as a potential anti-tumor agent, but the involved mechanism still remains elusive. Herein, we studied the underlying mechanism(s) of action of arctigenin on acidity-tolerant prostate cancer PC-3AcT cells in the lactic acid-containing medium. At concentration showing no toxicity on normal prostate epithelial RWPE-1 and HPrEC cells, arctigenin alone or in combination with docetaxel induced significant cytotoxicity in PC-3AcT cells compared to parental PC-3 cells. With arctigenin treatment, reactive oxygen species (ROS) levels, annexin V-PE positive fractions, sub- G 0 / G 1 peak in cell cycle analysis, mitochondrial membrane depolarization, and cell communication network factor 1 (CCN1) levels were increased, while cellular ATP content and phospho (p)-Akt level were decreased. Pretreatment with ROS scavenger N-acetylcysteine effectively reversed the series of phenomena caused by arctigenin, suggesting that ROS served as upstream molecules of arctigenin-driven cytotoxicity. Meanwhile, arctigenin increased the levels of p-receptor-interacting serine/threonine-protein kinase 3 (p-RIP3) and p-mixed lineage kinase domain-like pseudokinase (p-MLKL) as necroptosis mediators, and pretreatment with necroptosis inhibitor necrostatin-1 restored their levels and cell viability. Treatment of spheroids with arctigenin resulted in necroptotic cell death, which was prevented by N-acetylcysteine. The siRNA-based knockdown of CCN1 suppressed the levels of MLKL, B-cell lymphoma 2 (Bcl-2), and induced myeloid leukemia cell differentiation (Mcl-1) with increased cleavage of Bcl-2-associated X (Bax) and caspase-3. Collectively, these results provide new insights into the molecular mechanisms underlying arctigenin-induced cytotoxicity, and support arctigenin as a potential therapeutic agent for targeting non-Warburg phenotype through induction of necroptosis via ROS-mediated mitochondrial damage and CCN1 upregulation.
doi_str_mv 10.1007/s11010-020-03699-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2376506303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617329358</galeid><sourcerecordid>A617329358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ab735a27461f925b79aabe0bfc4000488f144020e00f550b8c9819e9e59b3ddb3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCILoU_wAFZ4sIl5TmOk_i4WkGLVMEFzpbjvGRdZe3FH0L9A_3dON1CBULItmw9z4zneQh5zeCCAXTvI2PAoIK6LN5KWbVPyIaJjleNZPIp2QAHqHrWdWfkRYw3UNDA2HNyxmtoBRdsQ-62wSQ7o7OOWjdmg5E6NMEfk4820rQPPs97erDJm713Y7B6oeNtnLIrRO_oD5v2dLf7zGg-Bpzzou_LRe8YfEw6ITXaGQzU4LJEmt1YzosubEO1seP6zkvybNJLxFcP-zn59vHD191Vdf3l8tNue12ZpqlTpYeOC113TcsmWYuhk1oPCMNkGgBo-n5iTVP-AwEmIWDojeyZRIlCDnwcB35O3p10i7fvGWNSBxtXX9qhz1HVXLRCltkX6Nu_oDc-B1fcFVTXCmg58EfUrBdU1k0-BW1WUbVtWcdrycWqdfEPVBkjHqzxDidb6n8Q6hOhJBFjwEkdgz3ocKsYqDV8dQpflWbVffiqLaQ3D47zcMDxN-VX2gXAT4BYrtyM4bGl_8j-BFVwunA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376506303</pqid></control><display><type>article</type><title>Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis</title><source>Springer Nature - Complete Springer Journals</source><creator>Lee, Yoon-Jin ; Nam, Hae-Seon ; Cho, Moon-Kyun ; Lee, Sang-Han</creator><creatorcontrib>Lee, Yoon-Jin ; Nam, Hae-Seon ; Cho, Moon-Kyun ; Lee, Sang-Han</creatorcontrib><description>Arctigenin, a mitochondrial complex I inhibitor, has been identified as a potential anti-tumor agent, but the involved mechanism still remains elusive. Herein, we studied the underlying mechanism(s) of action of arctigenin on acidity-tolerant prostate cancer PC-3AcT cells in the lactic acid-containing medium. At concentration showing no toxicity on normal prostate epithelial RWPE-1 and HPrEC cells, arctigenin alone or in combination with docetaxel induced significant cytotoxicity in PC-3AcT cells compared to parental PC-3 cells. With arctigenin treatment, reactive oxygen species (ROS) levels, annexin V-PE positive fractions, sub- G 0 / G 1 peak in cell cycle analysis, mitochondrial membrane depolarization, and cell communication network factor 1 (CCN1) levels were increased, while cellular ATP content and phospho (p)-Akt level were decreased. Pretreatment with ROS scavenger N-acetylcysteine effectively reversed the series of phenomena caused by arctigenin, suggesting that ROS served as upstream molecules of arctigenin-driven cytotoxicity. Meanwhile, arctigenin increased the levels of p-receptor-interacting serine/threonine-protein kinase 3 (p-RIP3) and p-mixed lineage kinase domain-like pseudokinase (p-MLKL) as necroptosis mediators, and pretreatment with necroptosis inhibitor necrostatin-1 restored their levels and cell viability. Treatment of spheroids with arctigenin resulted in necroptotic cell death, which was prevented by N-acetylcysteine. The siRNA-based knockdown of CCN1 suppressed the levels of MLKL, B-cell lymphoma 2 (Bcl-2), and induced myeloid leukemia cell differentiation (Mcl-1) with increased cleavage of Bcl-2-associated X (Bax) and caspase-3. Collectively, these results provide new insights into the molecular mechanisms underlying arctigenin-induced cytotoxicity, and support arctigenin as a potential therapeutic agent for targeting non-Warburg phenotype through induction of necroptosis via ROS-mediated mitochondrial damage and CCN1 upregulation.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-020-03699-6</identifier><identifier>PMID: 32065351</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetylcysteine ; Acidity ; Acidosis ; AKT protein ; Analysis ; Annexin V ; Anticancer properties ; BAX protein ; Bcl-2 protein ; Biochemistry ; Biomedical and Life Sciences ; Cardiology ; Caspase-3 ; Cell cycle ; Cell death ; Cell differentiation ; Cell interactions ; Cell viability ; Chemical compounds ; Cytotoxicity ; Depolarization ; Differentiation (biology) ; Electron transport chain ; Inhibitors ; Kinases ; Lactic acid ; Lactic acidosis ; Leukemia ; Levels ; Life Sciences ; Lymphocytes B ; Lymphoma ; Lymphomas ; MAP kinase ; Medical Biochemistry ; Membrane potential ; Molecular modelling ; Myeloid leukemia ; Necroptosis ; Oncology ; Oxidative stress ; Pharmacology ; Phenotypes ; Pretreatment ; Prostate cancer ; Protein kinase ; Reactive oxygen species ; Spheroids ; Toxicity ; Up-regulation</subject><ispartof>Molecular and cellular biochemistry, 2020-04, Vol.467 (1-2), p.45-56</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Molecular and Cellular Biochemistry is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ab735a27461f925b79aabe0bfc4000488f144020e00f550b8c9819e9e59b3ddb3</citedby><cites>FETCH-LOGICAL-c442t-ab735a27461f925b79aabe0bfc4000488f144020e00f550b8c9819e9e59b3ddb3</cites><orcidid>0000-0001-6407-9959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11010-020-03699-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11010-020-03699-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32065351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yoon-Jin</creatorcontrib><creatorcontrib>Nam, Hae-Seon</creatorcontrib><creatorcontrib>Cho, Moon-Kyun</creatorcontrib><creatorcontrib>Lee, Sang-Han</creatorcontrib><title>Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>Arctigenin, a mitochondrial complex I inhibitor, has been identified as a potential anti-tumor agent, but the involved mechanism still remains elusive. Herein, we studied the underlying mechanism(s) of action of arctigenin on acidity-tolerant prostate cancer PC-3AcT cells in the lactic acid-containing medium. At concentration showing no toxicity on normal prostate epithelial RWPE-1 and HPrEC cells, arctigenin alone or in combination with docetaxel induced significant cytotoxicity in PC-3AcT cells compared to parental PC-3 cells. With arctigenin treatment, reactive oxygen species (ROS) levels, annexin V-PE positive fractions, sub- G 0 / G 1 peak in cell cycle analysis, mitochondrial membrane depolarization, and cell communication network factor 1 (CCN1) levels were increased, while cellular ATP content and phospho (p)-Akt level were decreased. Pretreatment with ROS scavenger N-acetylcysteine effectively reversed the series of phenomena caused by arctigenin, suggesting that ROS served as upstream molecules of arctigenin-driven cytotoxicity. Meanwhile, arctigenin increased the levels of p-receptor-interacting serine/threonine-protein kinase 3 (p-RIP3) and p-mixed lineage kinase domain-like pseudokinase (p-MLKL) as necroptosis mediators, and pretreatment with necroptosis inhibitor necrostatin-1 restored their levels and cell viability. Treatment of spheroids with arctigenin resulted in necroptotic cell death, which was prevented by N-acetylcysteine. The siRNA-based knockdown of CCN1 suppressed the levels of MLKL, B-cell lymphoma 2 (Bcl-2), and induced myeloid leukemia cell differentiation (Mcl-1) with increased cleavage of Bcl-2-associated X (Bax) and caspase-3. Collectively, these results provide new insights into the molecular mechanisms underlying arctigenin-induced cytotoxicity, and support arctigenin as a potential therapeutic agent for targeting non-Warburg phenotype through induction of necroptosis via ROS-mediated mitochondrial damage and CCN1 upregulation.</description><subject>Acetylcysteine</subject><subject>Acidity</subject><subject>Acidosis</subject><subject>AKT protein</subject><subject>Analysis</subject><subject>Annexin V</subject><subject>Anticancer properties</subject><subject>BAX protein</subject><subject>Bcl-2 protein</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cardiology</subject><subject>Caspase-3</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell differentiation</subject><subject>Cell interactions</subject><subject>Cell viability</subject><subject>Chemical compounds</subject><subject>Cytotoxicity</subject><subject>Depolarization</subject><subject>Differentiation (biology)</subject><subject>Electron transport chain</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Lactic acid</subject><subject>Lactic acidosis</subject><subject>Leukemia</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Lymphomas</subject><subject>MAP kinase</subject><subject>Medical Biochemistry</subject><subject>Membrane potential</subject><subject>Molecular modelling</subject><subject>Myeloid leukemia</subject><subject>Necroptosis</subject><subject>Oncology</subject><subject>Oxidative stress</subject><subject>Pharmacology</subject><subject>Phenotypes</subject><subject>Pretreatment</subject><subject>Prostate cancer</subject><subject>Protein kinase</subject><subject>Reactive oxygen species</subject><subject>Spheroids</subject><subject>Toxicity</subject><subject>Up-regulation</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAUtBCILoU_wAFZ4sIl5TmOk_i4WkGLVMEFzpbjvGRdZe3FH0L9A_3dON1CBULItmw9z4zneQh5zeCCAXTvI2PAoIK6LN5KWbVPyIaJjleNZPIp2QAHqHrWdWfkRYw3UNDA2HNyxmtoBRdsQ-62wSQ7o7OOWjdmg5E6NMEfk4820rQPPs97erDJm713Y7B6oeNtnLIrRO_oD5v2dLf7zGg-Bpzzou_LRe8YfEw6ITXaGQzU4LJEmt1YzosubEO1seP6zkvybNJLxFcP-zn59vHD191Vdf3l8tNue12ZpqlTpYeOC113TcsmWYuhk1oPCMNkGgBo-n5iTVP-AwEmIWDojeyZRIlCDnwcB35O3p10i7fvGWNSBxtXX9qhz1HVXLRCltkX6Nu_oDc-B1fcFVTXCmg58EfUrBdU1k0-BW1WUbVtWcdrycWqdfEPVBkjHqzxDidb6n8Q6hOhJBFjwEkdgz3ocKsYqDV8dQpflWbVffiqLaQ3D47zcMDxN-VX2gXAT4BYrtyM4bGl_8j-BFVwunA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lee, Yoon-Jin</creator><creator>Nam, Hae-Seon</creator><creator>Cho, Moon-Kyun</creator><creator>Lee, Sang-Han</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6407-9959</orcidid></search><sort><creationdate>20200401</creationdate><title>Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis</title><author>Lee, Yoon-Jin ; Nam, Hae-Seon ; Cho, Moon-Kyun ; Lee, Sang-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ab735a27461f925b79aabe0bfc4000488f144020e00f550b8c9819e9e59b3ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylcysteine</topic><topic>Acidity</topic><topic>Acidosis</topic><topic>AKT protein</topic><topic>Analysis</topic><topic>Annexin V</topic><topic>Anticancer properties</topic><topic>BAX protein</topic><topic>Bcl-2 protein</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cardiology</topic><topic>Caspase-3</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell differentiation</topic><topic>Cell interactions</topic><topic>Cell viability</topic><topic>Chemical compounds</topic><topic>Cytotoxicity</topic><topic>Depolarization</topic><topic>Differentiation (biology)</topic><topic>Electron transport chain</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Lactic acid</topic><topic>Lactic acidosis</topic><topic>Leukemia</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Lymphomas</topic><topic>MAP kinase</topic><topic>Medical Biochemistry</topic><topic>Membrane potential</topic><topic>Molecular modelling</topic><topic>Myeloid leukemia</topic><topic>Necroptosis</topic><topic>Oncology</topic><topic>Oxidative stress</topic><topic>Pharmacology</topic><topic>Phenotypes</topic><topic>Pretreatment</topic><topic>Prostate cancer</topic><topic>Protein kinase</topic><topic>Reactive oxygen species</topic><topic>Spheroids</topic><topic>Toxicity</topic><topic>Up-regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoon-Jin</creatorcontrib><creatorcontrib>Nam, Hae-Seon</creatorcontrib><creatorcontrib>Cho, Moon-Kyun</creatorcontrib><creatorcontrib>Lee, Sang-Han</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoon-Jin</au><au>Nam, Hae-Seon</au><au>Cho, Moon-Kyun</au><au>Lee, Sang-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>467</volume><issue>1-2</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>Arctigenin, a mitochondrial complex I inhibitor, has been identified as a potential anti-tumor agent, but the involved mechanism still remains elusive. Herein, we studied the underlying mechanism(s) of action of arctigenin on acidity-tolerant prostate cancer PC-3AcT cells in the lactic acid-containing medium. At concentration showing no toxicity on normal prostate epithelial RWPE-1 and HPrEC cells, arctigenin alone or in combination with docetaxel induced significant cytotoxicity in PC-3AcT cells compared to parental PC-3 cells. With arctigenin treatment, reactive oxygen species (ROS) levels, annexin V-PE positive fractions, sub- G 0 / G 1 peak in cell cycle analysis, mitochondrial membrane depolarization, and cell communication network factor 1 (CCN1) levels were increased, while cellular ATP content and phospho (p)-Akt level were decreased. Pretreatment with ROS scavenger N-acetylcysteine effectively reversed the series of phenomena caused by arctigenin, suggesting that ROS served as upstream molecules of arctigenin-driven cytotoxicity. Meanwhile, arctigenin increased the levels of p-receptor-interacting serine/threonine-protein kinase 3 (p-RIP3) and p-mixed lineage kinase domain-like pseudokinase (p-MLKL) as necroptosis mediators, and pretreatment with necroptosis inhibitor necrostatin-1 restored their levels and cell viability. Treatment of spheroids with arctigenin resulted in necroptotic cell death, which was prevented by N-acetylcysteine. The siRNA-based knockdown of CCN1 suppressed the levels of MLKL, B-cell lymphoma 2 (Bcl-2), and induced myeloid leukemia cell differentiation (Mcl-1) with increased cleavage of Bcl-2-associated X (Bax) and caspase-3. Collectively, these results provide new insights into the molecular mechanisms underlying arctigenin-induced cytotoxicity, and support arctigenin as a potential therapeutic agent for targeting non-Warburg phenotype through induction of necroptosis via ROS-mediated mitochondrial damage and CCN1 upregulation.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32065351</pmid><doi>10.1007/s11010-020-03699-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6407-9959</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2020-04, Vol.467 (1-2), p.45-56
issn 0300-8177
1573-4919
language eng
recordid cdi_proquest_journals_2376506303
source Springer Nature - Complete Springer Journals
subjects Acetylcysteine
Acidity
Acidosis
AKT protein
Analysis
Annexin V
Anticancer properties
BAX protein
Bcl-2 protein
Biochemistry
Biomedical and Life Sciences
Cardiology
Caspase-3
Cell cycle
Cell death
Cell differentiation
Cell interactions
Cell viability
Chemical compounds
Cytotoxicity
Depolarization
Differentiation (biology)
Electron transport chain
Inhibitors
Kinases
Lactic acid
Lactic acidosis
Leukemia
Levels
Life Sciences
Lymphocytes B
Lymphoma
Lymphomas
MAP kinase
Medical Biochemistry
Membrane potential
Molecular modelling
Myeloid leukemia
Necroptosis
Oncology
Oxidative stress
Pharmacology
Phenotypes
Pretreatment
Prostate cancer
Protein kinase
Reactive oxygen species
Spheroids
Toxicity
Up-regulation
title Arctigenin induces necroptosis through mitochondrial dysfunction with CCN1 upregulation in prostate cancer cells under lactic acidosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arctigenin%20induces%20necroptosis%20through%20mitochondrial%20dysfunction%20with%20CCN1%20upregulation%20in%20prostate%20cancer%20cells%20under%20lactic%20acidosis&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Lee,%20Yoon-Jin&rft.date=2020-04-01&rft.volume=467&rft.issue=1-2&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-020-03699-6&rft_dat=%3Cgale_proqu%3EA617329358%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376506303&rft_id=info:pmid/32065351&rft_galeid=A617329358&rfr_iscdi=true