Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion
We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bertin, Karine Klutchnikoff, Nicolas Panloup, Fabien Varvenne, Maylis |
description | We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2376454845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376454845</sourcerecordid><originalsourceid>FETCH-proquest_journals_23764548453</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgKOo7LHgu1Py0vaooPoB3WdsEU9qkJqlSn95UfQBPw85-M8yEzCljm6TglM7Iyvs6TVOa5VQINievbYVd0A8J0gfdYtDWgFUQbhJ8-JzoBqik8ToM4wejb8sbRryESislnTRBYwPy3n_zlYuFBq5DhJXD8tPSwM7Zp9FooLWjsyRThY2Xq58uyPp4OO9PSefsvY9zLrXtXQz6C2V5xgUvuGD_UW_F6k-p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376454845</pqid></control><display><type>article</type><title>Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion</title><source>Free E- Journals</source><creator>Bertin, Karine ; Klutchnikoff, Nicolas ; Panloup, Fabien ; Varvenne, Maylis</creator><creatorcontrib>Bertin, Karine ; Klutchnikoff, Nicolas ; Panloup, Fabien ; Varvenne, Maylis</creatorcontrib><description>We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Density ; Differential equations</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bertin, Karine</creatorcontrib><creatorcontrib>Klutchnikoff, Nicolas</creatorcontrib><creatorcontrib>Panloup, Fabien</creatorcontrib><creatorcontrib>Varvenne, Maylis</creatorcontrib><title>Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion</title><title>arXiv.org</title><description>We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.</description><subject>Brownian motion</subject><subject>Density</subject><subject>Differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjs0KwjAQhIMgKOo7LHgu1Py0vaooPoB3WdsEU9qkJqlSn95UfQBPw85-M8yEzCljm6TglM7Iyvs6TVOa5VQINievbYVd0A8J0gfdYtDWgFUQbhJ8-JzoBqik8ToM4wejb8sbRryESislnTRBYwPy3n_zlYuFBq5DhJXD8tPSwM7Zp9FooLWjsyRThY2Xq58uyPp4OO9PSefsvY9zLrXtXQz6C2V5xgUvuGD_UW_F6k-p</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Bertin, Karine</creator><creator>Klutchnikoff, Nicolas</creator><creator>Panloup, Fabien</creator><creator>Varvenne, Maylis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200311</creationdate><title>Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion</title><author>Bertin, Karine ; Klutchnikoff, Nicolas ; Panloup, Fabien ; Varvenne, Maylis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23764548453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brownian motion</topic><topic>Density</topic><topic>Differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertin, Karine</creatorcontrib><creatorcontrib>Klutchnikoff, Nicolas</creatorcontrib><creatorcontrib>Panloup, Fabien</creatorcontrib><creatorcontrib>Varvenne, Maylis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertin, Karine</au><au>Klutchnikoff, Nicolas</au><au>Panloup, Fabien</au><au>Varvenne, Maylis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion</atitle><jtitle>arXiv.org</jtitle><date>2020-03-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2376454845 |
source | Free E- Journals |
subjects | Brownian motion Density Differential equations |
title | Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20estimation%20of%20the%20stationary%20density%20of%20a%20stochastic%20differential%20equation%20driven%20by%20a%20fractional%20Brownian%20motion&rft.jtitle=arXiv.org&rft.au=Bertin,%20Karine&rft.date=2020-03-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2376454845%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376454845&rft_id=info:pmid/&rfr_iscdi=true |