A new test methodology for studying the response of walls to real fire environments

Summary A new test methodology was developed to investigate the response of walls, partitions, and in‐wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire and materials 2020-04, Vol.44 (3), p.323-332
Hauptverfasser: Ellingham, Jennifer, DiDomizio, Matthew J., Weckman, Elizabeth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 3
container_start_page 323
container_title Fire and materials
container_volume 44
creator Ellingham, Jennifer
DiDomizio, Matthew J.
Weckman, Elizabeth J.
description Summary A new test methodology was developed to investigate the response of walls, partitions, and in‐wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.
doi_str_mv 10.1002/fam.2762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376421903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376421903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2932-7877d75840b02b32b4285491adc1a536e0edc543a7d32adf5e0202b7051a6b6b3</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4p-BECXrx0viRt0x7HcCpMPKjnkDavW0fbzCRz9NubOa-eHjx-_B_vT8gtgxkD4A-N7mdc5vyMTBiUZcKAFedkAgKKBDJgl-TK-y0AFIXMJ-R9Tgc80IA-0B7Dxhrb2fVIG-uoD3sztsOahg1Sh35nB4_UNvSgu87TYONSd7RpHVIcvltnhx6H4K_JRaM7jzd_c0o-l48fi-dk9fb0spivkpqXgieykNLIrEihAl4JXqW8yNKSaVMznYkcAU2dpUJLI7g2TYbAI5SQMZ1XeSWm5O6Uu3P2ax8_UFu7d0M8qbiQecpZCSKq-5OqnfXeYaN2ru21GxUDdaxMxcrUsbJIkxM9tB2O_zq1nL_--h_mLmwi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376421903</pqid></control><display><type>article</type><title>A new test methodology for studying the response of walls to real fire environments</title><source>Wiley Online Library All Journals</source><creator>Ellingham, Jennifer ; DiDomizio, Matthew J. ; Weckman, Elizabeth J.</creator><creatorcontrib>Ellingham, Jennifer ; DiDomizio, Matthew J. ; Weckman, Elizabeth J.</creatorcontrib><description>Summary A new test methodology was developed to investigate the response of walls, partitions, and in‐wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.</description><identifier>ISSN: 0308-0501</identifier><identifier>EISSN: 1099-1018</identifier><identifier>DOI: 10.1002/fam.2762</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Building components ; Ceilings ; compartment fire ; Configurations ; Exposure ; fire performance ; fire testing ; Fuels ; Heat flux ; real fire exposure ; Reproducibility ; Steel frames ; Test procedures ; Ventilation ; wall fire tests</subject><ispartof>Fire and materials, 2020-04, Vol.44 (3), p.323-332</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2932-7877d75840b02b32b4285491adc1a536e0edc543a7d32adf5e0202b7051a6b6b3</citedby><cites>FETCH-LOGICAL-c2932-7877d75840b02b32b4285491adc1a536e0edc543a7d32adf5e0202b7051a6b6b3</cites><orcidid>0000-0002-0472-4722 ; 0000-0001-9857-2186 ; 0000-0002-1978-8892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffam.2762$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffam.2762$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ellingham, Jennifer</creatorcontrib><creatorcontrib>DiDomizio, Matthew J.</creatorcontrib><creatorcontrib>Weckman, Elizabeth J.</creatorcontrib><title>A new test methodology for studying the response of walls to real fire environments</title><title>Fire and materials</title><description>Summary A new test methodology was developed to investigate the response of walls, partitions, and in‐wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.</description><subject>Building components</subject><subject>Ceilings</subject><subject>compartment fire</subject><subject>Configurations</subject><subject>Exposure</subject><subject>fire performance</subject><subject>fire testing</subject><subject>Fuels</subject><subject>Heat flux</subject><subject>real fire exposure</subject><subject>Reproducibility</subject><subject>Steel frames</subject><subject>Test procedures</subject><subject>Ventilation</subject><subject>wall fire tests</subject><issn>0308-0501</issn><issn>1099-1018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4p-BECXrx0viRt0x7HcCpMPKjnkDavW0fbzCRz9NubOa-eHjx-_B_vT8gtgxkD4A-N7mdc5vyMTBiUZcKAFedkAgKKBDJgl-TK-y0AFIXMJ-R9Tgc80IA-0B7Dxhrb2fVIG-uoD3sztsOahg1Sh35nB4_UNvSgu87TYONSd7RpHVIcvltnhx6H4K_JRaM7jzd_c0o-l48fi-dk9fb0spivkpqXgieykNLIrEihAl4JXqW8yNKSaVMznYkcAU2dpUJLI7g2TYbAI5SQMZ1XeSWm5O6Uu3P2ax8_UFu7d0M8qbiQecpZCSKq-5OqnfXeYaN2ru21GxUDdaxMxcrUsbJIkxM9tB2O_zq1nL_--h_mLmwi</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Ellingham, Jennifer</creator><creator>DiDomizio, Matthew J.</creator><creator>Weckman, Elizabeth J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0472-4722</orcidid><orcidid>https://orcid.org/0000-0001-9857-2186</orcidid><orcidid>https://orcid.org/0000-0002-1978-8892</orcidid></search><sort><creationdate>202004</creationdate><title>A new test methodology for studying the response of walls to real fire environments</title><author>Ellingham, Jennifer ; DiDomizio, Matthew J. ; Weckman, Elizabeth J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2932-7877d75840b02b32b4285491adc1a536e0edc543a7d32adf5e0202b7051a6b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Building components</topic><topic>Ceilings</topic><topic>compartment fire</topic><topic>Configurations</topic><topic>Exposure</topic><topic>fire performance</topic><topic>fire testing</topic><topic>Fuels</topic><topic>Heat flux</topic><topic>real fire exposure</topic><topic>Reproducibility</topic><topic>Steel frames</topic><topic>Test procedures</topic><topic>Ventilation</topic><topic>wall fire tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellingham, Jennifer</creatorcontrib><creatorcontrib>DiDomizio, Matthew J.</creatorcontrib><creatorcontrib>Weckman, Elizabeth J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fire and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellingham, Jennifer</au><au>DiDomizio, Matthew J.</au><au>Weckman, Elizabeth J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new test methodology for studying the response of walls to real fire environments</atitle><jtitle>Fire and materials</jtitle><date>2020-04</date><risdate>2020</risdate><volume>44</volume><issue>3</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>0308-0501</issn><eissn>1099-1018</eissn><abstract>Summary A new test methodology was developed to investigate the response of walls, partitions, and in‐wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fam.2762</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0472-4722</orcidid><orcidid>https://orcid.org/0000-0001-9857-2186</orcidid><orcidid>https://orcid.org/0000-0002-1978-8892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-0501
ispartof Fire and materials, 2020-04, Vol.44 (3), p.323-332
issn 0308-0501
1099-1018
language eng
recordid cdi_proquest_journals_2376421903
source Wiley Online Library All Journals
subjects Building components
Ceilings
compartment fire
Configurations
Exposure
fire performance
fire testing
Fuels
Heat flux
real fire exposure
Reproducibility
Steel frames
Test procedures
Ventilation
wall fire tests
title A new test methodology for studying the response of walls to real fire environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20test%20methodology%20for%20studying%20the%20response%20of%20walls%20to%20real%20fire%20environments&rft.jtitle=Fire%20and%20materials&rft.au=Ellingham,%20Jennifer&rft.date=2020-04&rft.volume=44&rft.issue=3&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=0308-0501&rft.eissn=1099-1018&rft_id=info:doi/10.1002/fam.2762&rft_dat=%3Cproquest_cross%3E2376421903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376421903&rft_id=info:pmid/&rfr_iscdi=true