3D light-field endoscopic imaging using a GRIN lens array
Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently e...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-03, Vol.116 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 116 |
creator | Guo, Changliang Urner, Tara Jia, Shu |
description | Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy. |
doi_str_mv | 10.1063/1.5143113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2376405834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376405834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOBFFKzVg_8g4EkhdSez2SRHqVoLRUH0vIz7qCkxG3dTof_elBY9CF7mAR8zzDB2DnwCXOI1THIQCIAHbAS8KNKhLg_ZiHOOqaxyOGYnMa6GNs8QR6zC26Spl-996mrbmMS2xkftu1on9Qct63aZrOM2UjJ7nj8mjW1jQiHQ5pQdOWqiPdvnMXu9v3uZPqSLp9l8erNINcqsTyuHDiUQAlGuRVlaURayck4ica1zEtwUABKEkYXQwiIZS4IyI94oxxLH7GI3twv-c21jr1Z-HdphpcqwkILnJYpBXe6UDj7GYJ3qwnBA2CjgavsZBWr_mcFe7WzUdU997dsf_OXDL1Sdcf_hv5O_AYoDbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376405834</pqid></control><display><type>article</type><title>3D light-field endoscopic imaging using a GRIN lens array</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Changliang ; Urner, Tara ; Jia, Shu</creator><creatorcontrib>Guo, Changliang ; Urner, Tara ; Jia, Shu</creatorcontrib><description>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5143113</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arrays ; Endoscopy ; Feature recognition ; Gradient index optics ; High resolution ; Image reconstruction ; Medical imaging ; Parallax ; Point spread functions ; Prototypes ; Space perception ; Tissues</subject><ispartof>Applied physics letters, 2020-03, Vol.116 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</citedby><cites>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</cites><orcidid>0000-0001-6854-7537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5143113$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Guo, Changliang</creatorcontrib><creatorcontrib>Urner, Tara</creatorcontrib><creatorcontrib>Jia, Shu</creatorcontrib><title>3D light-field endoscopic imaging using a GRIN lens array</title><title>Applied physics letters</title><description>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</description><subject>Applied physics</subject><subject>Arrays</subject><subject>Endoscopy</subject><subject>Feature recognition</subject><subject>Gradient index optics</subject><subject>High resolution</subject><subject>Image reconstruction</subject><subject>Medical imaging</subject><subject>Parallax</subject><subject>Point spread functions</subject><subject>Prototypes</subject><subject>Space perception</subject><subject>Tissues</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOBFFKzVg_8g4EkhdSez2SRHqVoLRUH0vIz7qCkxG3dTof_elBY9CF7mAR8zzDB2DnwCXOI1THIQCIAHbAS8KNKhLg_ZiHOOqaxyOGYnMa6GNs8QR6zC26Spl-996mrbmMS2xkftu1on9Qct63aZrOM2UjJ7nj8mjW1jQiHQ5pQdOWqiPdvnMXu9v3uZPqSLp9l8erNINcqsTyuHDiUQAlGuRVlaURayck4ica1zEtwUABKEkYXQwiIZS4IyI94oxxLH7GI3twv-c21jr1Z-HdphpcqwkILnJYpBXe6UDj7GYJ3qwnBA2CjgavsZBWr_mcFe7WzUdU997dsf_OXDL1Sdcf_hv5O_AYoDbw8</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Guo, Changliang</creator><creator>Urner, Tara</creator><creator>Jia, Shu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6854-7537</orcidid></search><sort><creationdate>20200309</creationdate><title>3D light-field endoscopic imaging using a GRIN lens array</title><author>Guo, Changliang ; Urner, Tara ; Jia, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Arrays</topic><topic>Endoscopy</topic><topic>Feature recognition</topic><topic>Gradient index optics</topic><topic>High resolution</topic><topic>Image reconstruction</topic><topic>Medical imaging</topic><topic>Parallax</topic><topic>Point spread functions</topic><topic>Prototypes</topic><topic>Space perception</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Changliang</creatorcontrib><creatorcontrib>Urner, Tara</creatorcontrib><creatorcontrib>Jia, Shu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Changliang</au><au>Urner, Tara</au><au>Jia, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D light-field endoscopic imaging using a GRIN lens array</atitle><jtitle>Applied physics letters</jtitle><date>2020-03-09</date><risdate>2020</risdate><volume>116</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5143113</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6854-7537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-03, Vol.116 (10) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2376405834 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Arrays Endoscopy Feature recognition Gradient index optics High resolution Image reconstruction Medical imaging Parallax Point spread functions Prototypes Space perception Tissues |
title | 3D light-field endoscopic imaging using a GRIN lens array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20light-field%20endoscopic%20imaging%20using%20a%20GRIN%20lens%20array&rft.jtitle=Applied%20physics%20letters&rft.au=Guo,%20Changliang&rft.date=2020-03-09&rft.volume=116&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5143113&rft_dat=%3Cproquest_scita%3E2376405834%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376405834&rft_id=info:pmid/&rfr_iscdi=true |