3D light-field endoscopic imaging using a GRIN lens array

Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-03, Vol.116 (10)
Hauptverfasser: Guo, Changliang, Urner, Tara, Jia, Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 116
creator Guo, Changliang
Urner, Tara
Jia, Shu
description Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.
doi_str_mv 10.1063/1.5143113
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2376405834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376405834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOBFFKzVg_8g4EkhdSez2SRHqVoLRUH0vIz7qCkxG3dTof_elBY9CF7mAR8zzDB2DnwCXOI1THIQCIAHbAS8KNKhLg_ZiHOOqaxyOGYnMa6GNs8QR6zC26Spl-996mrbmMS2xkftu1on9Qct63aZrOM2UjJ7nj8mjW1jQiHQ5pQdOWqiPdvnMXu9v3uZPqSLp9l8erNINcqsTyuHDiUQAlGuRVlaURayck4ica1zEtwUABKEkYXQwiIZS4IyI94oxxLH7GI3twv-c21jr1Z-HdphpcqwkILnJYpBXe6UDj7GYJ3qwnBA2CjgavsZBWr_mcFe7WzUdU997dsf_OXDL1Sdcf_hv5O_AYoDbw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376405834</pqid></control><display><type>article</type><title>3D light-field endoscopic imaging using a GRIN lens array</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Changliang ; Urner, Tara ; Jia, Shu</creator><creatorcontrib>Guo, Changliang ; Urner, Tara ; Jia, Shu</creatorcontrib><description>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5143113</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arrays ; Endoscopy ; Feature recognition ; Gradient index optics ; High resolution ; Image reconstruction ; Medical imaging ; Parallax ; Point spread functions ; Prototypes ; Space perception ; Tissues</subject><ispartof>Applied physics letters, 2020-03, Vol.116 (10)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</citedby><cites>FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</cites><orcidid>0000-0001-6854-7537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5143113$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Guo, Changliang</creatorcontrib><creatorcontrib>Urner, Tara</creatorcontrib><creatorcontrib>Jia, Shu</creatorcontrib><title>3D light-field endoscopic imaging using a GRIN lens array</title><title>Applied physics letters</title><description>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</description><subject>Applied physics</subject><subject>Arrays</subject><subject>Endoscopy</subject><subject>Feature recognition</subject><subject>Gradient index optics</subject><subject>High resolution</subject><subject>Image reconstruction</subject><subject>Medical imaging</subject><subject>Parallax</subject><subject>Point spread functions</subject><subject>Prototypes</subject><subject>Space perception</subject><subject>Tissues</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOBFFKzVg_8g4EkhdSez2SRHqVoLRUH0vIz7qCkxG3dTof_elBY9CF7mAR8zzDB2DnwCXOI1THIQCIAHbAS8KNKhLg_ZiHOOqaxyOGYnMa6GNs8QR6zC26Spl-996mrbmMS2xkftu1on9Qct63aZrOM2UjJ7nj8mjW1jQiHQ5pQdOWqiPdvnMXu9v3uZPqSLp9l8erNINcqsTyuHDiUQAlGuRVlaURayck4ica1zEtwUABKEkYXQwiIZS4IyI94oxxLH7GI3twv-c21jr1Z-HdphpcqwkILnJYpBXe6UDj7GYJ3qwnBA2CjgavsZBWr_mcFe7WzUdU997dsf_OXDL1Sdcf_hv5O_AYoDbw8</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Guo, Changliang</creator><creator>Urner, Tara</creator><creator>Jia, Shu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6854-7537</orcidid></search><sort><creationdate>20200309</creationdate><title>3D light-field endoscopic imaging using a GRIN lens array</title><author>Guo, Changliang ; Urner, Tara ; Jia, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9f3f361a31aa5c488e48769ff63a0cc5a40d711614d674c4e3adea4a2d4ba5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Arrays</topic><topic>Endoscopy</topic><topic>Feature recognition</topic><topic>Gradient index optics</topic><topic>High resolution</topic><topic>Image reconstruction</topic><topic>Medical imaging</topic><topic>Parallax</topic><topic>Point spread functions</topic><topic>Prototypes</topic><topic>Space perception</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Changliang</creatorcontrib><creatorcontrib>Urner, Tara</creatorcontrib><creatorcontrib>Jia, Shu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Changliang</au><au>Urner, Tara</au><au>Jia, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D light-field endoscopic imaging using a GRIN lens array</atitle><jtitle>Applied physics letters</jtitle><date>2020-03-09</date><risdate>2020</risdate><volume>116</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Endoscopic observation of biological tissues with quantitative depth perception, effective volumetric recognition of anatomical features, and efficient 3D navigation is critical for optical diagnostics and minimally invasive surgery for various target diseases. Light-field techniques have recently emerged as a promising approach to 3D photography and microscopy due to their scanning-free, highly scalable, and volumetric imaging capabilities. These advantages hold great potential for application to optical endoscopy, as the existing clinical endoscopy systems rely primarily on a 2D projection or use polarized glasses to provide visual parallax of complex 3D structures. Here, we report a light-field endoscopy prototype using a GRIN lens array (GLA). The GLA-based system maintains consistent spatial measurements with clinical endoscopic systems, a compact size in comparison with compound objective lenses, as well as the ability to maximally capture the angular information necessary for 3D imaging. We also present a computational strategy combining a wave-optics model and a hybrid point-spread function for high-resolution volumetric reconstruction. The system achieves spatial resolutions of 20–60 μm and 100–200 μm in the lateral and axial dimensions, respectively, across an imaging volume of ∼5 mm × 5 mm × 10 mm. We anticipate the prototype to offer a promising paradigm for glasses-free, high-resolution 3D medical endoscopy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5143113</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6854-7537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-03, Vol.116 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2376405834
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Arrays
Endoscopy
Feature recognition
Gradient index optics
High resolution
Image reconstruction
Medical imaging
Parallax
Point spread functions
Prototypes
Space perception
Tissues
title 3D light-field endoscopic imaging using a GRIN lens array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20light-field%20endoscopic%20imaging%20using%20a%20GRIN%20lens%20array&rft.jtitle=Applied%20physics%20letters&rft.au=Guo,%20Changliang&rft.date=2020-03-09&rft.volume=116&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5143113&rft_dat=%3Cproquest_scita%3E2376405834%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376405834&rft_id=info:pmid/&rfr_iscdi=true