Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance
Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 – 19 ng/mL for azoxystrobin, 4.5 – 50 ng/mL for boscalid, 2.5 – 25 ng/mL for chlorfenapyr, 5.5...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2020/03/10, Vol.36(3), pp.335-340 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | 3 |
container_start_page | 335 |
container_title | Analytical Sciences |
container_volume | 36 |
creator | MIYAKE, Shiro HIRAKAWA, Yuki YAMASAKI, Tomomi WATANABE, Eiki HARADA, Ayako IWASA, Seiji NARITA, Hiroshi |
description | Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 – 19 ng/mL for azoxystrobin, 4.5 – 50 ng/mL for boscalid, 2.5 – 25 ng/mL for chlorfenapyr, 5.5 – 50 ng/mL for imazalil, 3.5 – 50 ng/mL for isoxathion, and 8.5 – 110 ng/mL for nitenpyram. They showed adequate recovery results in tomato samples: 104 – 116% for azoxystrobin, 94 – 101% for boscalid, 90 – 112% for chlorfenapyr, 96 – 106% for imazalil, 107 – 119% for isoxathion, and 104 – 109% for nitenpyram. The correlation coefficient with liquid chromatography (HPLC or LC-MS/MS) using vegetable samples also agreed well: 0.91 – 0.99 as R2 without strong bias, except for nitenpyram for which the SPR immunosensor sensitivity was too low. The SPR immunosensor will have high applicability for pesticide residue analyses in vegetable samples. |
doi_str_mv | 10.2116/analsci.19P333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376273783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376273783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-5f769872a5284efa3e2317964d5897e33f0a0215e8dd076048947a93f563b2c73</originalsourceid><addsrcrecordid>eNp1kE1vGyEQhlHVqnHTXnuskHpeB5hdYI9t3I9IkWrV6RlhdkjX8oIDu1L874u1rnvqBTTMMy-jh5D3nC0F5_LGBrvPrl_ydg0AL8iCQ60rIWr5kixYy1kloWZX5E3OO8a40EK8JlfAJXDO6gV52vTDtB9twDhlusIR3djHQKOnm_6ZrnrvMWEY6cPxgPn0vMY89q7vSrU9Uhvo3TBMIWYMOSb62WbsaAnYTMlbh3S9t3ko9U_MMdjg8C155cvO-O58X5NfX7883H6v7n98u7v9dF852eixarySrVbCNkLX6C2gAK5aWXeNbhUCeGaZ4A3qrmNKslq3tbIt-EbCVjgF1-TjnHtI8WkqS5tdnNJJlxGgpFCgNBRqOVMuxZwTenNI_WDT0XBmTobN2bCZDZeBD-fYaTtgd8H_Ki3AzQzk0gqPmP79-9_I1Tyxy6N9xEukTUX0Hi84SAOnYx67tN1vmwwG-AM0oKDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376273783</pqid></control><display><type>article</type><title>Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance</title><source>J-STAGE Free</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Open Access Titles of Japan</source><source>Free Full-Text Journals in Chemistry</source><creator>MIYAKE, Shiro ; HIRAKAWA, Yuki ; YAMASAKI, Tomomi ; WATANABE, Eiki ; HARADA, Ayako ; IWASA, Seiji ; NARITA, Hiroshi</creator><creatorcontrib>MIYAKE, Shiro ; HIRAKAWA, Yuki ; YAMASAKI, Tomomi ; WATANABE, Eiki ; HARADA, Ayako ; IWASA, Seiji ; NARITA, Hiroshi</creatorcontrib><description>Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 – 19 ng/mL for azoxystrobin, 4.5 – 50 ng/mL for boscalid, 2.5 – 25 ng/mL for chlorfenapyr, 5.5 – 50 ng/mL for imazalil, 3.5 – 50 ng/mL for isoxathion, and 8.5 – 110 ng/mL for nitenpyram. They showed adequate recovery results in tomato samples: 104 – 116% for azoxystrobin, 94 – 101% for boscalid, 90 – 112% for chlorfenapyr, 96 – 106% for imazalil, 107 – 119% for isoxathion, and 104 – 109% for nitenpyram. The correlation coefficient with liquid chromatography (HPLC or LC-MS/MS) using vegetable samples also agreed well: 0.91 – 0.99 as R2 without strong bias, except for nitenpyram for which the SPR immunosensor sensitivity was too low. The SPR immunosensor will have high applicability for pesticide residue analyses in vegetable samples.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.19P333</identifier><identifier>PMID: 31631104</identifier><language>eng</language><publisher>Singapore: The Japan Society for Analytical Chemistry</publisher><subject>Analytical Chemistry ; Azoxystrobin ; Biosensing Techniques ; Chemistry ; Chlorfenapyr ; Correlation coefficient ; Correlation coefficients ; Environmental Monitoring - methods ; Environmental Pollutants - analysis ; fungicide ; High performance liquid chromatography ; Immunosensor ; Immunosensors ; insecticide ; Liquid chromatography ; Monoclonal antibodies ; monoclonal antibody ; pesticide ; Pesticide residues ; Pesticide Residues - analysis ; Pesticides ; Pesticides - analysis ; Resonance ; Surface plasmon resonance ; Surface Plasmon Resonance - methods ; Tomatoes ; Vegetables</subject><ispartof>Analytical Sciences, 2020/03/10, Vol.36(3), pp.335-340</ispartof><rights>2020 by The Japan Society for Analytical Chemistry</rights><rights>The Japan Society for Analytical Chemistry 2020</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-5f769872a5284efa3e2317964d5897e33f0a0215e8dd076048947a93f563b2c73</citedby><cites>FETCH-LOGICAL-c658t-5f769872a5284efa3e2317964d5897e33f0a0215e8dd076048947a93f563b2c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2116/analsci.19P333$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2116/analsci.19P333$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,1884,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31631104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MIYAKE, Shiro</creatorcontrib><creatorcontrib>HIRAKAWA, Yuki</creatorcontrib><creatorcontrib>YAMASAKI, Tomomi</creatorcontrib><creatorcontrib>WATANABE, Eiki</creatorcontrib><creatorcontrib>HARADA, Ayako</creatorcontrib><creatorcontrib>IWASA, Seiji</creatorcontrib><creatorcontrib>NARITA, Hiroshi</creatorcontrib><title>Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance</title><title>Analytical Sciences</title><addtitle>ANAL. SCI</addtitle><addtitle>Anal Sci</addtitle><description>Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 – 19 ng/mL for azoxystrobin, 4.5 – 50 ng/mL for boscalid, 2.5 – 25 ng/mL for chlorfenapyr, 5.5 – 50 ng/mL for imazalil, 3.5 – 50 ng/mL for isoxathion, and 8.5 – 110 ng/mL for nitenpyram. They showed adequate recovery results in tomato samples: 104 – 116% for azoxystrobin, 94 – 101% for boscalid, 90 – 112% for chlorfenapyr, 96 – 106% for imazalil, 107 – 119% for isoxathion, and 104 – 109% for nitenpyram. The correlation coefficient with liquid chromatography (HPLC or LC-MS/MS) using vegetable samples also agreed well: 0.91 – 0.99 as R2 without strong bias, except for nitenpyram for which the SPR immunosensor sensitivity was too low. The SPR immunosensor will have high applicability for pesticide residue analyses in vegetable samples.</description><subject>Analytical Chemistry</subject><subject>Azoxystrobin</subject><subject>Biosensing Techniques</subject><subject>Chemistry</subject><subject>Chlorfenapyr</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Pollutants - analysis</subject><subject>fungicide</subject><subject>High performance liquid chromatography</subject><subject>Immunosensor</subject><subject>Immunosensors</subject><subject>insecticide</subject><subject>Liquid chromatography</subject><subject>Monoclonal antibodies</subject><subject>monoclonal antibody</subject><subject>pesticide</subject><subject>Pesticide residues</subject><subject>Pesticide Residues - analysis</subject><subject>Pesticides</subject><subject>Pesticides - analysis</subject><subject>Resonance</subject><subject>Surface plasmon resonance</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Tomatoes</subject><subject>Vegetables</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1vGyEQhlHVqnHTXnuskHpeB5hdYI9t3I9IkWrV6RlhdkjX8oIDu1L874u1rnvqBTTMMy-jh5D3nC0F5_LGBrvPrl_ydg0AL8iCQ60rIWr5kixYy1kloWZX5E3OO8a40EK8JlfAJXDO6gV52vTDtB9twDhlusIR3djHQKOnm_6ZrnrvMWEY6cPxgPn0vMY89q7vSrU9Uhvo3TBMIWYMOSb62WbsaAnYTMlbh3S9t3ko9U_MMdjg8C155cvO-O58X5NfX7883H6v7n98u7v9dF852eixarySrVbCNkLX6C2gAK5aWXeNbhUCeGaZ4A3qrmNKslq3tbIt-EbCVjgF1-TjnHtI8WkqS5tdnNJJlxGgpFCgNBRqOVMuxZwTenNI_WDT0XBmTobN2bCZDZeBD-fYaTtgd8H_Ki3AzQzk0gqPmP79-9_I1Tyxy6N9xEukTUX0Hi84SAOnYx67tN1vmwwG-AM0oKDH</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>MIYAKE, Shiro</creator><creator>HIRAKAWA, Yuki</creator><creator>YAMASAKI, Tomomi</creator><creator>WATANABE, Eiki</creator><creator>HARADA, Ayako</creator><creator>IWASA, Seiji</creator><creator>NARITA, Hiroshi</creator><general>The Japan Society for Analytical Chemistry</general><general>Springer Nature Singapore</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20200310</creationdate><title>Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance</title><author>MIYAKE, Shiro ; HIRAKAWA, Yuki ; YAMASAKI, Tomomi ; WATANABE, Eiki ; HARADA, Ayako ; IWASA, Seiji ; NARITA, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-5f769872a5284efa3e2317964d5897e33f0a0215e8dd076048947a93f563b2c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Azoxystrobin</topic><topic>Biosensing Techniques</topic><topic>Chemistry</topic><topic>Chlorfenapyr</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Pollutants - analysis</topic><topic>fungicide</topic><topic>High performance liquid chromatography</topic><topic>Immunosensor</topic><topic>Immunosensors</topic><topic>insecticide</topic><topic>Liquid chromatography</topic><topic>Monoclonal antibodies</topic><topic>monoclonal antibody</topic><topic>pesticide</topic><topic>Pesticide residues</topic><topic>Pesticide Residues - analysis</topic><topic>Pesticides</topic><topic>Pesticides - analysis</topic><topic>Resonance</topic><topic>Surface plasmon resonance</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Tomatoes</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIYAKE, Shiro</creatorcontrib><creatorcontrib>HIRAKAWA, Yuki</creatorcontrib><creatorcontrib>YAMASAKI, Tomomi</creatorcontrib><creatorcontrib>WATANABE, Eiki</creatorcontrib><creatorcontrib>HARADA, Ayako</creatorcontrib><creatorcontrib>IWASA, Seiji</creatorcontrib><creatorcontrib>NARITA, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIYAKE, Shiro</au><au>HIRAKAWA, Yuki</au><au>YAMASAKI, Tomomi</au><au>WATANABE, Eiki</au><au>HARADA, Ayako</au><au>IWASA, Seiji</au><au>NARITA, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance</atitle><jtitle>Analytical Sciences</jtitle><stitle>ANAL. SCI</stitle><addtitle>Anal Sci</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>335</spage><epage>340</epage><pages>335-340</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>Six pesticides, azoxystrobin, boscalid, chlorfenapyr, imazalil, isoxathion, and nitenpyram, were simultaneously detected by using a surface plasmon resonance (SPR) immunosensor. The working ranges were 3.5 – 19 ng/mL for azoxystrobin, 4.5 – 50 ng/mL for boscalid, 2.5 – 25 ng/mL for chlorfenapyr, 5.5 – 50 ng/mL for imazalil, 3.5 – 50 ng/mL for isoxathion, and 8.5 – 110 ng/mL for nitenpyram. They showed adequate recovery results in tomato samples: 104 – 116% for azoxystrobin, 94 – 101% for boscalid, 90 – 112% for chlorfenapyr, 96 – 106% for imazalil, 107 – 119% for isoxathion, and 104 – 109% for nitenpyram. The correlation coefficient with liquid chromatography (HPLC or LC-MS/MS) using vegetable samples also agreed well: 0.91 – 0.99 as R2 without strong bias, except for nitenpyram for which the SPR immunosensor sensitivity was too low. The SPR immunosensor will have high applicability for pesticide residue analyses in vegetable samples.</abstract><cop>Singapore</cop><pub>The Japan Society for Analytical Chemistry</pub><pmid>31631104</pmid><doi>10.2116/analsci.19P333</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0910-6340 |
ispartof | Analytical Sciences, 2020/03/10, Vol.36(3), pp.335-340 |
issn | 0910-6340 1348-2246 |
language | eng |
recordid | cdi_proquest_journals_2376273783 |
source | J-STAGE Free; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Open Access Titles of Japan; Free Full-Text Journals in Chemistry |
subjects | Analytical Chemistry Azoxystrobin Biosensing Techniques Chemistry Chlorfenapyr Correlation coefficient Correlation coefficients Environmental Monitoring - methods Environmental Pollutants - analysis fungicide High performance liquid chromatography Immunosensor Immunosensors insecticide Liquid chromatography Monoclonal antibodies monoclonal antibody pesticide Pesticide residues Pesticide Residues - analysis Pesticides Pesticides - analysis Resonance Surface plasmon resonance Surface Plasmon Resonance - methods Tomatoes Vegetables |
title | Simultaneous Detection of Six Different Types of Pesticides by an Immunosensor Based on Surface Plasmon Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Detection%20of%20Six%20Different%20Types%20of%20Pesticides%20by%20an%20Immunosensor%20Based%20on%20Surface%20Plasmon%20Resonance&rft.jtitle=Analytical%20Sciences&rft.au=MIYAKE,%20Shiro&rft.date=2020-03-10&rft.volume=36&rft.issue=3&rft.spage=335&rft.epage=340&rft.pages=335-340&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.19P333&rft_dat=%3Cproquest_cross%3E2376273783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376273783&rft_id=info:pmid/31631104&rfr_iscdi=true |