Network capital, exploitative and exploratory innovations——from the perspective of network dynamics
•Organizations’ network capital derives from their embeddedness in both collaboration networks and knowledge networks.•Network capital includes knowledge combinatorial capacity, knowledge stocks, technological distance, and network efficiency.•From the perspective of knowledge combination, explorati...
Gespeichert in:
Veröffentlicht in: | Technological forecasting & social change 2020-03, Vol.152, p.119910, Article 119910 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119910 |
container_title | Technological forecasting & social change |
container_volume | 152 |
creator | Zhang, Zhengang Luo, Taiye |
description | •Organizations’ network capital derives from their embeddedness in both collaboration networks and knowledge networks.•Network capital includes knowledge combinatorial capacity, knowledge stocks, technological distance, and network efficiency.•From the perspective of knowledge combination, exploration and exploitation could be supportive of each other.•SAOMs are used to test the relationships between network capital, exploratory and exploitative innovations.
Taking the patent data in the field of nano energy from 2000 to 2018 as an example, this paper divides organizations’ network capital into four dimensions (i.e., knowledge combinatorial capacity, knowledge stocks, technological distance and network efficiency) and uses Stochastic Actor-Oriented Models to test the relationships between the four dimensions of network capital, exploratory innovation, and exploitative innovation. We found that exploratory innovation and exploitative innovation could be supportive of each other. Organizations’ knowledge combinatorial capacity has a positive effect on exploitative innovation, but a negative effect on exploratory innovation. Both knowledge stocks and technological distance have inverted U-shaped relationships with exploratory innovation and exploitative innovation. Network efficiency has a positive impact on exploratory innovation and an inverted U-shaped relationship with exploitative innovation. |
doi_str_mv | 10.1016/j.techfore.2020.119910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376210578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004016251930856X</els_id><sourcerecordid>2376210578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-21f1fcae59364f717a1eadca33fa71380c9b5c7329438362c65a97cab8bd21323</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMIvoEhcSfGjiZMbqOIlVXCBs-U6a-rQ2sF2C73xEXwhX4JLyhlppV3N7sxqBqFTgkcEk_KiHUVQc-08jCimCSR1TfAeGpCKs7wocL2PBhiPcU5KWhyioxBajDFnVTlALw8Q351_zZTsTJSL8ww-uoVLYzRryKRtesDL6PwmM9a6dVo5G74_v1Jp75ZZnEPWgQ8dqF-W05ndyTYbK5dGhWN0oOUiwMmuD9HzzfXT5C6fPt7eT66muWKcxpwSTbSSUNSsHGtOuCQgGyUZ05ITVmFVzwrFGa3HrGIlVWUha67krJo1lDDKhuis1-28e1tBiKJ1K2_TS0EZLynBBa_SVdlfKe9C8KBF581S-o0gWGxDFa34C1VsQxV9qIl42RMheVgb8CIoA1ZBY3wyLxpn_pP4Acf7h6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376210578</pqid></control><display><type>article</type><title>Network capital, exploitative and exploratory innovations——from the perspective of network dynamics</title><source>Sociological Abstracts</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Zhengang ; Luo, Taiye</creator><creatorcontrib>Zhang, Zhengang ; Luo, Taiye</creatorcontrib><description>•Organizations’ network capital derives from their embeddedness in both collaboration networks and knowledge networks.•Network capital includes knowledge combinatorial capacity, knowledge stocks, technological distance, and network efficiency.•From the perspective of knowledge combination, exploration and exploitation could be supportive of each other.•SAOMs are used to test the relationships between network capital, exploratory and exploitative innovations.
Taking the patent data in the field of nano energy from 2000 to 2018 as an example, this paper divides organizations’ network capital into four dimensions (i.e., knowledge combinatorial capacity, knowledge stocks, technological distance and network efficiency) and uses Stochastic Actor-Oriented Models to test the relationships between the four dimensions of network capital, exploratory innovation, and exploitative innovation. We found that exploratory innovation and exploitative innovation could be supportive of each other. Organizations’ knowledge combinatorial capacity has a positive effect on exploitative innovation, but a negative effect on exploratory innovation. Both knowledge stocks and technological distance have inverted U-shaped relationships with exploratory innovation and exploitative innovation. Network efficiency has a positive impact on exploratory innovation and an inverted U-shaped relationship with exploitative innovation.</description><identifier>ISSN: 0040-1625</identifier><identifier>EISSN: 1873-5509</identifier><identifier>DOI: 10.1016/j.techfore.2020.119910</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Combinatorial analysis ; Exploitative innovation ; Exploratory innovation ; Innovations ; Knowledge ; Network capital ; Organizations ; Stochastic Actor-Oriented Models ; Stochastic models</subject><ispartof>Technological forecasting & social change, 2020-03, Vol.152, p.119910, Article 119910</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-21f1fcae59364f717a1eadca33fa71380c9b5c7329438362c65a97cab8bd21323</citedby><cites>FETCH-LOGICAL-c372t-21f1fcae59364f717a1eadca33fa71380c9b5c7329438362c65a97cab8bd21323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.techfore.2020.119910$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,33774,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Zhengang</creatorcontrib><creatorcontrib>Luo, Taiye</creatorcontrib><title>Network capital, exploitative and exploratory innovations——from the perspective of network dynamics</title><title>Technological forecasting & social change</title><description>•Organizations’ network capital derives from their embeddedness in both collaboration networks and knowledge networks.•Network capital includes knowledge combinatorial capacity, knowledge stocks, technological distance, and network efficiency.•From the perspective of knowledge combination, exploration and exploitation could be supportive of each other.•SAOMs are used to test the relationships between network capital, exploratory and exploitative innovations.
Taking the patent data in the field of nano energy from 2000 to 2018 as an example, this paper divides organizations’ network capital into four dimensions (i.e., knowledge combinatorial capacity, knowledge stocks, technological distance and network efficiency) and uses Stochastic Actor-Oriented Models to test the relationships between the four dimensions of network capital, exploratory innovation, and exploitative innovation. We found that exploratory innovation and exploitative innovation could be supportive of each other. Organizations’ knowledge combinatorial capacity has a positive effect on exploitative innovation, but a negative effect on exploratory innovation. Both knowledge stocks and technological distance have inverted U-shaped relationships with exploratory innovation and exploitative innovation. Network efficiency has a positive impact on exploratory innovation and an inverted U-shaped relationship with exploitative innovation.</description><subject>Combinatorial analysis</subject><subject>Exploitative innovation</subject><subject>Exploratory innovation</subject><subject>Innovations</subject><subject>Knowledge</subject><subject>Network capital</subject><subject>Organizations</subject><subject>Stochastic Actor-Oriented Models</subject><subject>Stochastic models</subject><issn>0040-1625</issn><issn>1873-5509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFUMtOwzAQtBBIlMIvoEhcSfGjiZMbqOIlVXCBs-U6a-rQ2sF2C73xEXwhX4JLyhlppV3N7sxqBqFTgkcEk_KiHUVQc-08jCimCSR1TfAeGpCKs7wocL2PBhiPcU5KWhyioxBajDFnVTlALw8Q351_zZTsTJSL8ww-uoVLYzRryKRtesDL6PwmM9a6dVo5G74_v1Jp75ZZnEPWgQ8dqF-W05ndyTYbK5dGhWN0oOUiwMmuD9HzzfXT5C6fPt7eT66muWKcxpwSTbSSUNSsHGtOuCQgGyUZ05ITVmFVzwrFGa3HrGIlVWUha67krJo1lDDKhuis1-28e1tBiKJ1K2_TS0EZLynBBa_SVdlfKe9C8KBF581S-o0gWGxDFa34C1VsQxV9qIl42RMheVgb8CIoA1ZBY3wyLxpn_pP4Acf7h6Y</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zhang, Zhengang</creator><creator>Luo, Taiye</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>WZK</scope></search><sort><creationdate>20200301</creationdate><title>Network capital, exploitative and exploratory innovations——from the perspective of network dynamics</title><author>Zhang, Zhengang ; Luo, Taiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-21f1fcae59364f717a1eadca33fa71380c9b5c7329438362c65a97cab8bd21323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Exploitative innovation</topic><topic>Exploratory innovation</topic><topic>Innovations</topic><topic>Knowledge</topic><topic>Network capital</topic><topic>Organizations</topic><topic>Stochastic Actor-Oriented Models</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhengang</creatorcontrib><creatorcontrib>Luo, Taiye</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Technological forecasting & social change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhengang</au><au>Luo, Taiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network capital, exploitative and exploratory innovations——from the perspective of network dynamics</atitle><jtitle>Technological forecasting & social change</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>152</volume><spage>119910</spage><pages>119910-</pages><artnum>119910</artnum><issn>0040-1625</issn><eissn>1873-5509</eissn><abstract>•Organizations’ network capital derives from their embeddedness in both collaboration networks and knowledge networks.•Network capital includes knowledge combinatorial capacity, knowledge stocks, technological distance, and network efficiency.•From the perspective of knowledge combination, exploration and exploitation could be supportive of each other.•SAOMs are used to test the relationships between network capital, exploratory and exploitative innovations.
Taking the patent data in the field of nano energy from 2000 to 2018 as an example, this paper divides organizations’ network capital into four dimensions (i.e., knowledge combinatorial capacity, knowledge stocks, technological distance and network efficiency) and uses Stochastic Actor-Oriented Models to test the relationships between the four dimensions of network capital, exploratory innovation, and exploitative innovation. We found that exploratory innovation and exploitative innovation could be supportive of each other. Organizations’ knowledge combinatorial capacity has a positive effect on exploitative innovation, but a negative effect on exploratory innovation. Both knowledge stocks and technological distance have inverted U-shaped relationships with exploratory innovation and exploitative innovation. Network efficiency has a positive impact on exploratory innovation and an inverted U-shaped relationship with exploitative innovation.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.techfore.2020.119910</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1625 |
ispartof | Technological forecasting & social change, 2020-03, Vol.152, p.119910, Article 119910 |
issn | 0040-1625 1873-5509 |
language | eng |
recordid | cdi_proquest_journals_2376210578 |
source | Sociological Abstracts; Access via ScienceDirect (Elsevier) |
subjects | Combinatorial analysis Exploitative innovation Exploratory innovation Innovations Knowledge Network capital Organizations Stochastic Actor-Oriented Models Stochastic models |
title | Network capital, exploitative and exploratory innovations——from the perspective of network dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20capital,%20exploitative%20and%20exploratory%20innovations%E2%80%94%E2%80%94from%20the%20perspective%20of%20network%20dynamics&rft.jtitle=Technological%20forecasting%20&%20social%20change&rft.au=Zhang,%20Zhengang&rft.date=2020-03-01&rft.volume=152&rft.spage=119910&rft.pages=119910-&rft.artnum=119910&rft.issn=0040-1625&rft.eissn=1873-5509&rft_id=info:doi/10.1016/j.techfore.2020.119910&rft_dat=%3Cproquest_cross%3E2376210578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376210578&rft_id=info:pmid/&rft_els_id=S004016251930856X&rfr_iscdi=true |