New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde

The reactivity of malvidin-3- O -glucoside with acetaldehyde, pyruvic and p- coumaric acids, was separately studied in wine model solution in the presence and absence of catechin, by UV–Visible spectrophotometry, NMR and Mass spectrometry. These naturally occurring metabolites were selected on accou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European food research & technology 2020-04, Vol.246 (4), p.733-743
Hauptverfasser: Forino, Martino, Picariello, Luigi, Lopatriello, Annalisa, Moio, Luigi, Gambuti, Angelita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 4
container_start_page 733
container_title European food research & technology
container_volume 246
creator Forino, Martino
Picariello, Luigi
Lopatriello, Annalisa
Moio, Luigi
Gambuti, Angelita
description The reactivity of malvidin-3- O -glucoside with acetaldehyde, pyruvic and p- coumaric acids, was separately studied in wine model solution in the presence and absence of catechin, by UV–Visible spectrophotometry, NMR and Mass spectrometry. These naturally occurring metabolites were selected on account of their role in determining the red wine color. The scientific bases underlying the wine color are far from being fully clarified. Nonetheless, understanding the factors that govern the wine color is a crucial prerequisite for winemakers to implement appropriate technological practices to produce naturally stable high-quality wines. Among the investigated wine metabolites, acetaldehyde turned out to be the most reactive towards malvidin-3- O -glucoside by forming, as major products, ethylene-linked polymeric pigments that affected chromatic properties of the wine-like model solutions. Pyruvic acid and p- coumaric acid did not react with malvidin-3- O -glucoside, but in combination with catechin, they both determined a significant hypsochromic effect. Unexpectedly, in our model solutions, the formation of pyranoanthocyanins was not observed.
doi_str_mv 10.1007/s00217-020-03442-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2376093387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376093387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f8b3f79621e918ac7cb2b7a2600997e29f36c43a54fda2bdd7a548faf668b6b63</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hzwI7UTbqjiJVVwgbNlO3bjksbFdmnz73FbBDdOO1rNN6sdAC4xusYI8ZuIEMG8QAQViJYlKbZHYIRLWhWEVpPjX835KTiLcYHQpGa4HIH2xWyg66ObtylmkTxMrYG6NUunZQeVjCZCb-HG9XntOx-g-fLdOjnfQ9k3MCapXOfScLsnP8wAg-_MjpHaJNk1ph0acw5OrOyiufiZY_D-cP82fSpmr4_P07tZoSmuU2ErRS2vGcGmxpXUXCuiuCQMobrmhtSWMl1SOSltI4lqGp5lZaVlrFJMMToGV4fcVfCfaxOTWPh16PNJkd9nqKa04tlFDi4dfIzBWLEKbinDIDASu0bFoVGRGxX7RsU2Q_QAxWzu5yb8Rf9DfQOJbnq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376093387</pqid></control><display><type>article</type><title>New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde</title><source>SpringerLink Journals - AutoHoldings</source><creator>Forino, Martino ; Picariello, Luigi ; Lopatriello, Annalisa ; Moio, Luigi ; Gambuti, Angelita</creator><creatorcontrib>Forino, Martino ; Picariello, Luigi ; Lopatriello, Annalisa ; Moio, Luigi ; Gambuti, Angelita</creatorcontrib><description>The reactivity of malvidin-3- O -glucoside with acetaldehyde, pyruvic and p- coumaric acids, was separately studied in wine model solution in the presence and absence of catechin, by UV–Visible spectrophotometry, NMR and Mass spectrometry. These naturally occurring metabolites were selected on account of their role in determining the red wine color. The scientific bases underlying the wine color are far from being fully clarified. Nonetheless, understanding the factors that govern the wine color is a crucial prerequisite for winemakers to implement appropriate technological practices to produce naturally stable high-quality wines. Among the investigated wine metabolites, acetaldehyde turned out to be the most reactive towards malvidin-3- O -glucoside by forming, as major products, ethylene-linked polymeric pigments that affected chromatic properties of the wine-like model solutions. Pyruvic acid and p- coumaric acid did not react with malvidin-3- O -glucoside, but in combination with catechin, they both determined a significant hypsochromic effect. Unexpectedly, in our model solutions, the formation of pyranoanthocyanins was not observed.</description><identifier>ISSN: 1438-2377</identifier><identifier>EISSN: 1438-2385</identifier><identifier>DOI: 10.1007/s00217-020-03442-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetaldehyde ; Agriculture ; Analytical Chemistry ; Appropriate technology ; Biotechnology ; Catechin ; Chemistry ; Chemistry and Materials Science ; Color ; Coumaric acid ; Food Science ; Forestry ; Glucosides ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; NMR ; Nuclear magnetic resonance ; Original Paper ; p-Coumaric acid ; Pigments ; Pyruvic acid ; Spectrophotometry ; Wine ; Wines</subject><ispartof>European food research &amp; technology, 2020-04, Vol.246 (4), p.733-743</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>European Food Research and Technology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f8b3f79621e918ac7cb2b7a2600997e29f36c43a54fda2bdd7a548faf668b6b63</citedby><cites>FETCH-LOGICAL-c319t-f8b3f79621e918ac7cb2b7a2600997e29f36c43a54fda2bdd7a548faf668b6b63</cites><orcidid>0000-0001-8036-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00217-020-03442-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00217-020-03442-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Forino, Martino</creatorcontrib><creatorcontrib>Picariello, Luigi</creatorcontrib><creatorcontrib>Lopatriello, Annalisa</creatorcontrib><creatorcontrib>Moio, Luigi</creatorcontrib><creatorcontrib>Gambuti, Angelita</creatorcontrib><title>New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde</title><title>European food research &amp; technology</title><addtitle>Eur Food Res Technol</addtitle><description>The reactivity of malvidin-3- O -glucoside with acetaldehyde, pyruvic and p- coumaric acids, was separately studied in wine model solution in the presence and absence of catechin, by UV–Visible spectrophotometry, NMR and Mass spectrometry. These naturally occurring metabolites were selected on account of their role in determining the red wine color. The scientific bases underlying the wine color are far from being fully clarified. Nonetheless, understanding the factors that govern the wine color is a crucial prerequisite for winemakers to implement appropriate technological practices to produce naturally stable high-quality wines. Among the investigated wine metabolites, acetaldehyde turned out to be the most reactive towards malvidin-3- O -glucoside by forming, as major products, ethylene-linked polymeric pigments that affected chromatic properties of the wine-like model solutions. Pyruvic acid and p- coumaric acid did not react with malvidin-3- O -glucoside, but in combination with catechin, they both determined a significant hypsochromic effect. Unexpectedly, in our model solutions, the formation of pyranoanthocyanins was not observed.</description><subject>Acetaldehyde</subject><subject>Agriculture</subject><subject>Analytical Chemistry</subject><subject>Appropriate technology</subject><subject>Biotechnology</subject><subject>Catechin</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Color</subject><subject>Coumaric acid</subject><subject>Food Science</subject><subject>Forestry</subject><subject>Glucosides</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Original Paper</subject><subject>p-Coumaric acid</subject><subject>Pigments</subject><subject>Pyruvic acid</subject><subject>Spectrophotometry</subject><subject>Wine</subject><subject>Wines</subject><issn>1438-2377</issn><issn>1438-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hzwI7UTbqjiJVVwgbNlO3bjksbFdmnz73FbBDdOO1rNN6sdAC4xusYI8ZuIEMG8QAQViJYlKbZHYIRLWhWEVpPjX835KTiLcYHQpGa4HIH2xWyg66ObtylmkTxMrYG6NUunZQeVjCZCb-HG9XntOx-g-fLdOjnfQ9k3MCapXOfScLsnP8wAg-_MjpHaJNk1ph0acw5OrOyiufiZY_D-cP82fSpmr4_P07tZoSmuU2ErRS2vGcGmxpXUXCuiuCQMobrmhtSWMl1SOSltI4lqGp5lZaVlrFJMMToGV4fcVfCfaxOTWPh16PNJkd9nqKa04tlFDi4dfIzBWLEKbinDIDASu0bFoVGRGxX7RsU2Q_QAxWzu5yb8Rf9DfQOJbnq4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Forino, Martino</creator><creator>Picariello, Luigi</creator><creator>Lopatriello, Annalisa</creator><creator>Moio, Luigi</creator><creator>Gambuti, Angelita</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QR</scope><scope>7RQ</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8036-3546</orcidid></search><sort><creationdate>20200401</creationdate><title>New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde</title><author>Forino, Martino ; Picariello, Luigi ; Lopatriello, Annalisa ; Moio, Luigi ; Gambuti, Angelita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f8b3f79621e918ac7cb2b7a2600997e29f36c43a54fda2bdd7a548faf668b6b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetaldehyde</topic><topic>Agriculture</topic><topic>Analytical Chemistry</topic><topic>Appropriate technology</topic><topic>Biotechnology</topic><topic>Catechin</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Color</topic><topic>Coumaric acid</topic><topic>Food Science</topic><topic>Forestry</topic><topic>Glucosides</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Original Paper</topic><topic>p-Coumaric acid</topic><topic>Pigments</topic><topic>Pyruvic acid</topic><topic>Spectrophotometry</topic><topic>Wine</topic><topic>Wines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forino, Martino</creatorcontrib><creatorcontrib>Picariello, Luigi</creatorcontrib><creatorcontrib>Lopatriello, Annalisa</creatorcontrib><creatorcontrib>Moio, Luigi</creatorcontrib><creatorcontrib>Gambuti, Angelita</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European food research &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forino, Martino</au><au>Picariello, Luigi</au><au>Lopatriello, Annalisa</au><au>Moio, Luigi</au><au>Gambuti, Angelita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde</atitle><jtitle>European food research &amp; technology</jtitle><stitle>Eur Food Res Technol</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>246</volume><issue>4</issue><spage>733</spage><epage>743</epage><pages>733-743</pages><issn>1438-2377</issn><eissn>1438-2385</eissn><abstract>The reactivity of malvidin-3- O -glucoside with acetaldehyde, pyruvic and p- coumaric acids, was separately studied in wine model solution in the presence and absence of catechin, by UV–Visible spectrophotometry, NMR and Mass spectrometry. These naturally occurring metabolites were selected on account of their role in determining the red wine color. The scientific bases underlying the wine color are far from being fully clarified. Nonetheless, understanding the factors that govern the wine color is a crucial prerequisite for winemakers to implement appropriate technological practices to produce naturally stable high-quality wines. Among the investigated wine metabolites, acetaldehyde turned out to be the most reactive towards malvidin-3- O -glucoside by forming, as major products, ethylene-linked polymeric pigments that affected chromatic properties of the wine-like model solutions. Pyruvic acid and p- coumaric acid did not react with malvidin-3- O -glucoside, but in combination with catechin, they both determined a significant hypsochromic effect. Unexpectedly, in our model solutions, the formation of pyranoanthocyanins was not observed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00217-020-03442-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8036-3546</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-2377
ispartof European food research & technology, 2020-04, Vol.246 (4), p.733-743
issn 1438-2377
1438-2385
language eng
recordid cdi_proquest_journals_2376093387
source SpringerLink Journals - AutoHoldings
subjects Acetaldehyde
Agriculture
Analytical Chemistry
Appropriate technology
Biotechnology
Catechin
Chemistry
Chemistry and Materials Science
Color
Coumaric acid
Food Science
Forestry
Glucosides
Mass spectrometry
Mass spectroscopy
Metabolites
NMR
Nuclear magnetic resonance
Original Paper
p-Coumaric acid
Pigments
Pyruvic acid
Spectrophotometry
Wine
Wines
title New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20chemical%20bases%20of%20wine%20color%20evolution%20and%20stability:%20the%20key%20role%20of%20acetaldehyde&rft.jtitle=European%20food%20research%20&%20technology&rft.au=Forino,%20Martino&rft.date=2020-04-01&rft.volume=246&rft.issue=4&rft.spage=733&rft.epage=743&rft.pages=733-743&rft.issn=1438-2377&rft.eissn=1438-2385&rft_id=info:doi/10.1007/s00217-020-03442-x&rft_dat=%3Cproquest_cross%3E2376093387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376093387&rft_id=info:pmid/&rfr_iscdi=true