Study of identification of global flow regime in a long pipeline transportation system

Accurate recognition of flow regimes is essential for the analysis of behavior and operation of two-phase flow systems in industrial processes. This paper studies the feasibility of a method for objective recognition of global flow regimes using differential pressure and artificial neural networks....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2020-02, Vol.362, p.507-516
Hauptverfasser: Xu, Qiang, Zhou, Haozu, Zhu, Yongshuai, Cao, Yeqi, Huang, Bo, Li, Wensheng, Guo, Liejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue
container_start_page 507
container_title Powder technology
container_volume 362
creator Xu, Qiang
Zhou, Haozu
Zhu, Yongshuai
Cao, Yeqi
Huang, Bo
Li, Wensheng
Guo, Liejin
description Accurate recognition of flow regimes is essential for the analysis of behavior and operation of two-phase flow systems in industrial processes. This paper studies the feasibility of a method for objective recognition of global flow regimes using differential pressure and artificial neural networks. Three main global flow regimes are classified based on differential pressure of the riser. Five statistical parameters are inputted into neural networks classifiers, and good recognition rates of global flow regimes are achieved. With increase of feature parameters, recognition rates of global flow regimes increase, and five selected feature parameters are sufficient to achieve good recognition rates. Recognition rates of two categories are generally higher than those of four categories, and they are found to increase with sample lengths. Average recognition rates of four categories are higher than 94.3% if sample lengths are longer than 240 s and reach almost 100% when sample lengths are sufficient long. [Display omitted] •Experiments of air-water flow in a long-distance pipeline-riser are carried out.•Differential pressures of the riser reveal different trends in various flow regimes.•Flow regime recognition is performed by differential pressure and neural network.•Influences of feature number and sample length on recognition rate are analyzed.
doi_str_mv 10.1016/j.powtec.2019.12.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375830492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019311222</els_id><sourcerecordid>2375830492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b1ef1b7df460ae9a394b146237eb0dbc47e6ac5ee26ed6d6602ebb5ced4118583</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYuA69bcmrYbQQZvMODCC-5Cmp4OKZ2mJhmHeXsz1LWrAz__hfMhdE1JTgmVt30-uX0EkzNC65yynNDqBC1oVfKMs-rrFC0I4SwrakrO0UUIPSFEckoW6PMt7toDdh22LYzRdtboaN14VDaDa_SAu8HtsYeN3QK2I9Z4cOMGT3aCwY6Ao9djmJyPcy4cQoTtJTrr9BDg6u8u0cfjw_vqOVu_Pr2s7teZ4VzErKHQ0aZsOyGJhlrzWjRUSMZLaEjbGFGC1KYAYBJa2UpJGDRNYaAVlFZFxZfoZu6dvPveQYiqdzs_pkmVSpKBiJoll5hdxrsQPHRq8nar_UFRoo4EVa9mgupIUFGmEsEUu5tjkD74seBVMBbGtG49mKhaZ_8v-AXVvH2J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375830492</pqid></control><display><type>article</type><title>Study of identification of global flow regime in a long pipeline transportation system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Qiang ; Zhou, Haozu ; Zhu, Yongshuai ; Cao, Yeqi ; Huang, Bo ; Li, Wensheng ; Guo, Liejin</creator><creatorcontrib>Xu, Qiang ; Zhou, Haozu ; Zhu, Yongshuai ; Cao, Yeqi ; Huang, Bo ; Li, Wensheng ; Guo, Liejin</creatorcontrib><description>Accurate recognition of flow regimes is essential for the analysis of behavior and operation of two-phase flow systems in industrial processes. This paper studies the feasibility of a method for objective recognition of global flow regimes using differential pressure and artificial neural networks. Three main global flow regimes are classified based on differential pressure of the riser. Five statistical parameters are inputted into neural networks classifiers, and good recognition rates of global flow regimes are achieved. With increase of feature parameters, recognition rates of global flow regimes increase, and five selected feature parameters are sufficient to achieve good recognition rates. Recognition rates of two categories are generally higher than those of four categories, and they are found to increase with sample lengths. Average recognition rates of four categories are higher than 94.3% if sample lengths are longer than 240 s and reach almost 100% when sample lengths are sufficient long. [Display omitted] •Experiments of air-water flow in a long-distance pipeline-riser are carried out.•Differential pressures of the riser reveal different trends in various flow regimes.•Flow regime recognition is performed by differential pressure and neural network.•Influences of feature number and sample length on recognition rate are analyzed.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.12.018</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Artificial neural networks ; Categories ; Differential pressure ; Feasibility studies ; Feature recognition ; Global flow regime ; Multiphase flow ; Neural networks ; Parameters ; Pipeline-riser system ; Pressure ; Pressure difference ; Regime recognition ; Severe slugging ; Transportation networks ; Transportation systems ; Two phase flow</subject><ispartof>Powder technology, 2020-02, Vol.362, p.507-516</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b1ef1b7df460ae9a394b146237eb0dbc47e6ac5ee26ed6d6602ebb5ced4118583</citedby><cites>FETCH-LOGICAL-c334t-b1ef1b7df460ae9a394b146237eb0dbc47e6ac5ee26ed6d6602ebb5ced4118583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2019.12.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhou, Haozu</creatorcontrib><creatorcontrib>Zhu, Yongshuai</creatorcontrib><creatorcontrib>Cao, Yeqi</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Guo, Liejin</creatorcontrib><title>Study of identification of global flow regime in a long pipeline transportation system</title><title>Powder technology</title><description>Accurate recognition of flow regimes is essential for the analysis of behavior and operation of two-phase flow systems in industrial processes. This paper studies the feasibility of a method for objective recognition of global flow regimes using differential pressure and artificial neural networks. Three main global flow regimes are classified based on differential pressure of the riser. Five statistical parameters are inputted into neural networks classifiers, and good recognition rates of global flow regimes are achieved. With increase of feature parameters, recognition rates of global flow regimes increase, and five selected feature parameters are sufficient to achieve good recognition rates. Recognition rates of two categories are generally higher than those of four categories, and they are found to increase with sample lengths. Average recognition rates of four categories are higher than 94.3% if sample lengths are longer than 240 s and reach almost 100% when sample lengths are sufficient long. [Display omitted] •Experiments of air-water flow in a long-distance pipeline-riser are carried out.•Differential pressures of the riser reveal different trends in various flow regimes.•Flow regime recognition is performed by differential pressure and neural network.•Influences of feature number and sample length on recognition rate are analyzed.</description><subject>Artificial neural networks</subject><subject>Categories</subject><subject>Differential pressure</subject><subject>Feasibility studies</subject><subject>Feature recognition</subject><subject>Global flow regime</subject><subject>Multiphase flow</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Pipeline-riser system</subject><subject>Pressure</subject><subject>Pressure difference</subject><subject>Regime recognition</subject><subject>Severe slugging</subject><subject>Transportation networks</subject><subject>Transportation systems</subject><subject>Two phase flow</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYuA69bcmrYbQQZvMODCC-5Cmp4OKZ2mJhmHeXsz1LWrAz__hfMhdE1JTgmVt30-uX0EkzNC65yynNDqBC1oVfKMs-rrFC0I4SwrakrO0UUIPSFEckoW6PMt7toDdh22LYzRdtboaN14VDaDa_SAu8HtsYeN3QK2I9Z4cOMGT3aCwY6Ao9djmJyPcy4cQoTtJTrr9BDg6u8u0cfjw_vqOVu_Pr2s7teZ4VzErKHQ0aZsOyGJhlrzWjRUSMZLaEjbGFGC1KYAYBJa2UpJGDRNYaAVlFZFxZfoZu6dvPveQYiqdzs_pkmVSpKBiJoll5hdxrsQPHRq8nar_UFRoo4EVa9mgupIUFGmEsEUu5tjkD74seBVMBbGtG49mKhaZ_8v-AXVvH2J</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Xu, Qiang</creator><creator>Zhou, Haozu</creator><creator>Zhu, Yongshuai</creator><creator>Cao, Yeqi</creator><creator>Huang, Bo</creator><creator>Li, Wensheng</creator><creator>Guo, Liejin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20200215</creationdate><title>Study of identification of global flow regime in a long pipeline transportation system</title><author>Xu, Qiang ; Zhou, Haozu ; Zhu, Yongshuai ; Cao, Yeqi ; Huang, Bo ; Li, Wensheng ; Guo, Liejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b1ef1b7df460ae9a394b146237eb0dbc47e6ac5ee26ed6d6602ebb5ced4118583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Categories</topic><topic>Differential pressure</topic><topic>Feasibility studies</topic><topic>Feature recognition</topic><topic>Global flow regime</topic><topic>Multiphase flow</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Pipeline-riser system</topic><topic>Pressure</topic><topic>Pressure difference</topic><topic>Regime recognition</topic><topic>Severe slugging</topic><topic>Transportation networks</topic><topic>Transportation systems</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhou, Haozu</creatorcontrib><creatorcontrib>Zhu, Yongshuai</creatorcontrib><creatorcontrib>Cao, Yeqi</creatorcontrib><creatorcontrib>Huang, Bo</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Guo, Liejin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qiang</au><au>Zhou, Haozu</au><au>Zhu, Yongshuai</au><au>Cao, Yeqi</au><au>Huang, Bo</au><au>Li, Wensheng</au><au>Guo, Liejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of identification of global flow regime in a long pipeline transportation system</atitle><jtitle>Powder technology</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>362</volume><spage>507</spage><epage>516</epage><pages>507-516</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Accurate recognition of flow regimes is essential for the analysis of behavior and operation of two-phase flow systems in industrial processes. This paper studies the feasibility of a method for objective recognition of global flow regimes using differential pressure and artificial neural networks. Three main global flow regimes are classified based on differential pressure of the riser. Five statistical parameters are inputted into neural networks classifiers, and good recognition rates of global flow regimes are achieved. With increase of feature parameters, recognition rates of global flow regimes increase, and five selected feature parameters are sufficient to achieve good recognition rates. Recognition rates of two categories are generally higher than those of four categories, and they are found to increase with sample lengths. Average recognition rates of four categories are higher than 94.3% if sample lengths are longer than 240 s and reach almost 100% when sample lengths are sufficient long. [Display omitted] •Experiments of air-water flow in a long-distance pipeline-riser are carried out.•Differential pressures of the riser reveal different trends in various flow regimes.•Flow regime recognition is performed by differential pressure and neural network.•Influences of feature number and sample length on recognition rate are analyzed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.12.018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2020-02, Vol.362, p.507-516
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2375830492
source Access via ScienceDirect (Elsevier)
subjects Artificial neural networks
Categories
Differential pressure
Feasibility studies
Feature recognition
Global flow regime
Multiphase flow
Neural networks
Parameters
Pipeline-riser system
Pressure
Pressure difference
Regime recognition
Severe slugging
Transportation networks
Transportation systems
Two phase flow
title Study of identification of global flow regime in a long pipeline transportation system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20identification%20of%20global%20flow%20regime%20in%20a%20long%20pipeline%20transportation%20system&rft.jtitle=Powder%20technology&rft.au=Xu,%20Qiang&rft.date=2020-02-15&rft.volume=362&rft.spage=507&rft.epage=516&rft.pages=507-516&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.12.018&rft_dat=%3Cproquest_cross%3E2375830492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375830492&rft_id=info:pmid/&rft_els_id=S0032591019311222&rfr_iscdi=true