Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems

This article deals with the Multisource Fermat–Weber and continuous k-Median problems. The first problem is the continuous location–allocation problem, defined in a planar region, an important problem in facility location subject. The continuous k-Median problem, defined in a multidimensional space,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2020-03, Vol.191, p.105226, Article 105226
Hauptverfasser: Xavier, Vinicius Layter, Xavier, Adilson Elias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105226
container_title Knowledge-based systems
container_volume 191
creator Xavier, Vinicius Layter
Xavier, Adilson Elias
description This article deals with the Multisource Fermat–Weber and continuous k-Median problems. The first problem is the continuous location–allocation problem, defined in a planar region, an important problem in facility location subject. The continuous k-Median problem, defined in a multidimensional space, is also known as the minimum sum-of-distances clustering problem. Their mathematical modellings lead to a min-sum-min formulation which is a global optimization problem with a bi-level nature, nondifferentiable and with many minimizers. To overcome these severe difficulties, the Hyperbolic Smoothing methodology is proposed, in connection with a partition of locations in two groups: location in the frontier and location in gravitational regions, which drastically simplify the computational tasks. For the purpose of illustrating both the reliability and the efficiency of the method, we perform a set of computational experiments making use of the traditional instances described in the literature. Apart from consistently presenting similar or even better results when compared to related approaches, the novel technique was able to deal with instances never tackled before, with up to 1243088 cities.
doi_str_mv 10.1016/j.knosys.2019.105226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375824066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119305507</els_id><sourcerecordid>2375824066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-bde166040d24e2ec5e81130821271d5fb21e18b254ba5dbe109a5bfe346f8a073</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTBWv0DFwOuU-9MMkm6EUrxBRU3isthHjcmbZKpM1OhO__BP_RLTIlrVxcO53HPIeSSwYwBy6_Xs03vwj7MOLD5AAnO8yMyYWXBkyKD-TGZwFxAUoBgp-QshDUAcM7KCakXxmCLXkW0tN5v0WvXNoaGzrlYN_077TDWztLKeRpc-3mAYo2027WxCW7nDdI79J2KP1_fb6jRU9Vbukme0Daqp1vvdItdOCcnlWoDXvzdKXm9u31ZPiSr5_vH5WKVmDTNYqItsjyHDCzPkKMRWDKWQskZL5gVleYMWam5yLQSViODuRK6wjTLq1JBkU7J1eg7BH_sMES5Hp7sh0jJ00KUPIM8H1jZyDLeheCxklvfdMrvJQN52FSu5bipPGwqx00H2c0ow6HBZ4NeBtNgb4aqHk2U1jX_G_wCvO-EEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375824066</pqid></control><display><type>article</type><title>Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xavier, Vinicius Layter ; Xavier, Adilson Elias</creator><creatorcontrib>Xavier, Vinicius Layter ; Xavier, Adilson Elias</creatorcontrib><description>This article deals with the Multisource Fermat–Weber and continuous k-Median problems. The first problem is the continuous location–allocation problem, defined in a planar region, an important problem in facility location subject. The continuous k-Median problem, defined in a multidimensional space, is also known as the minimum sum-of-distances clustering problem. Their mathematical modellings lead to a min-sum-min formulation which is a global optimization problem with a bi-level nature, nondifferentiable and with many minimizers. To overcome these severe difficulties, the Hyperbolic Smoothing methodology is proposed, in connection with a partition of locations in two groups: location in the frontier and location in gravitational regions, which drastically simplify the computational tasks. For the purpose of illustrating both the reliability and the efficiency of the method, we perform a set of computational experiments making use of the traditional instances described in the literature. Apart from consistently presenting similar or even better results when compared to related approaches, the novel technique was able to deal with instances never tackled before, with up to 1243088 cities.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.105226</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clustering ; Facility location ; Global optimization ; k-Median ; Mathematical models ; Min-sum-distances clustering ; Multisource Fermat–Weber ; Smoothing</subject><ispartof>Knowledge-based systems, 2020-03, Vol.191, p.105226, Article 105226</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-bde166040d24e2ec5e81130821271d5fb21e18b254ba5dbe109a5bfe346f8a073</citedby><cites>FETCH-LOGICAL-c334t-bde166040d24e2ec5e81130821271d5fb21e18b254ba5dbe109a5bfe346f8a073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2019.105226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xavier, Vinicius Layter</creatorcontrib><creatorcontrib>Xavier, Adilson Elias</creatorcontrib><title>Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems</title><title>Knowledge-based systems</title><description>This article deals with the Multisource Fermat–Weber and continuous k-Median problems. The first problem is the continuous location–allocation problem, defined in a planar region, an important problem in facility location subject. The continuous k-Median problem, defined in a multidimensional space, is also known as the minimum sum-of-distances clustering problem. Their mathematical modellings lead to a min-sum-min formulation which is a global optimization problem with a bi-level nature, nondifferentiable and with many minimizers. To overcome these severe difficulties, the Hyperbolic Smoothing methodology is proposed, in connection with a partition of locations in two groups: location in the frontier and location in gravitational regions, which drastically simplify the computational tasks. For the purpose of illustrating both the reliability and the efficiency of the method, we perform a set of computational experiments making use of the traditional instances described in the literature. Apart from consistently presenting similar or even better results when compared to related approaches, the novel technique was able to deal with instances never tackled before, with up to 1243088 cities.</description><subject>Clustering</subject><subject>Facility location</subject><subject>Global optimization</subject><subject>k-Median</subject><subject>Mathematical models</subject><subject>Min-sum-distances clustering</subject><subject>Multisource Fermat–Weber</subject><subject>Smoothing</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKw0AUHUTBWv0DFwOuU-9MMkm6EUrxBRU3isthHjcmbZKpM1OhO__BP_RLTIlrVxcO53HPIeSSwYwBy6_Xs03vwj7MOLD5AAnO8yMyYWXBkyKD-TGZwFxAUoBgp-QshDUAcM7KCakXxmCLXkW0tN5v0WvXNoaGzrlYN_077TDWztLKeRpc-3mAYo2027WxCW7nDdI79J2KP1_fb6jRU9Vbukme0Daqp1vvdItdOCcnlWoDXvzdKXm9u31ZPiSr5_vH5WKVmDTNYqItsjyHDCzPkKMRWDKWQskZL5gVleYMWam5yLQSViODuRK6wjTLq1JBkU7J1eg7BH_sMES5Hp7sh0jJ00KUPIM8H1jZyDLeheCxklvfdMrvJQN52FSu5bipPGwqx00H2c0ow6HBZ4NeBtNgb4aqHk2U1jX_G_wCvO-EEg</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>Xavier, Vinicius Layter</creator><creator>Xavier, Adilson Elias</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200305</creationdate><title>Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems</title><author>Xavier, Vinicius Layter ; Xavier, Adilson Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-bde166040d24e2ec5e81130821271d5fb21e18b254ba5dbe109a5bfe346f8a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Facility location</topic><topic>Global optimization</topic><topic>k-Median</topic><topic>Mathematical models</topic><topic>Min-sum-distances clustering</topic><topic>Multisource Fermat–Weber</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xavier, Vinicius Layter</creatorcontrib><creatorcontrib>Xavier, Adilson Elias</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xavier, Vinicius Layter</au><au>Xavier, Adilson Elias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems</atitle><jtitle>Knowledge-based systems</jtitle><date>2020-03-05</date><risdate>2020</risdate><volume>191</volume><spage>105226</spage><pages>105226-</pages><artnum>105226</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This article deals with the Multisource Fermat–Weber and continuous k-Median problems. The first problem is the continuous location–allocation problem, defined in a planar region, an important problem in facility location subject. The continuous k-Median problem, defined in a multidimensional space, is also known as the minimum sum-of-distances clustering problem. Their mathematical modellings lead to a min-sum-min formulation which is a global optimization problem with a bi-level nature, nondifferentiable and with many minimizers. To overcome these severe difficulties, the Hyperbolic Smoothing methodology is proposed, in connection with a partition of locations in two groups: location in the frontier and location in gravitational regions, which drastically simplify the computational tasks. For the purpose of illustrating both the reliability and the efficiency of the method, we perform a set of computational experiments making use of the traditional instances described in the literature. Apart from consistently presenting similar or even better results when compared to related approaches, the novel technique was able to deal with instances never tackled before, with up to 1243088 cities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.105226</doi></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2020-03, Vol.191, p.105226, Article 105226
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2375824066
source Access via ScienceDirect (Elsevier)
subjects Clustering
Facility location
Global optimization
k-Median
Mathematical models
Min-sum-distances clustering
Multisource Fermat–Weber
Smoothing
title Accelerated hyperbolic smoothing method for solving the multisource Fermat–Weber and k-Median problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20hyperbolic%20smoothing%20method%20for%20solving%20the%20multisource%20Fermat%E2%80%93Weber%20and%20k-Median%20problems&rft.jtitle=Knowledge-based%20systems&rft.au=Xavier,%20Vinicius%20Layter&rft.date=2020-03-05&rft.volume=191&rft.spage=105226&rft.pages=105226-&rft.artnum=105226&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.105226&rft_dat=%3Cproquest_cross%3E2375824066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375824066&rft_id=info:pmid/&rft_els_id=S0950705119305507&rfr_iscdi=true