Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides
We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds inclu...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-02, Vol.101 (8) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. B |
container_volume | 101 |
creator | Chittari, Bheema Lingam Lee, Dongkyu Banerjee, Nepal MacDonald, Allan H Hwang, Euyheon Jung, Jeil |
description | We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains. |
doi_str_mv | 10.1103/PhysRevB.101.085415 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2375822042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375822042</sourcerecordid><originalsourceid>FETCH-proquest_journals_23758220423</originalsourceid><addsrcrecordid>eNqNjL1uAjEQhC2USKCEJ0hjKbUva98PuAQESoMURSnokLlbwOjODl4fiLfHBUqdama-2R3G3iRkUkL-8XW80Tde5pkEmcG0LGQ5YCNVVFpoXemnP1_CkI2JTgAgK9AT0CO2X5gQLAbBjWs4xWCsE7F3Ztcity4G68jWvDMHh9FSlxiPVy8a22FqvDMtX882OU-fKcdEeIcx0fpo2tof0NkG6ZU9701LOH7oC3tfLX8Wn-I3-HOPFLcn34c0RluVT8qpUlCo_H9Xd3l6UGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375822042</pqid></control><display><type>article</type><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><source>American Physical Society Journals</source><creator>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</creator><creatorcontrib>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</creatorcontrib><description>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.085415</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; Carrier density ; Chromium ; Density functional theory ; Ferromagnetism ; Germanium ; Magnetism ; Manganese ; Mathematical analysis ; Nickel ; Selenium ; Semiconductors ; Silicon ; Tin ; Transition metal compounds</subject><ispartof>Physical review. B, 2020-02, Vol.101 (8)</ispartof><rights>Copyright American Physical Society Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chittari, Bheema Lingam</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>MacDonald, Allan H</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><title>Physical review. B</title><description>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</description><subject>Antiferromagnetism</subject><subject>Carrier density</subject><subject>Chromium</subject><subject>Density functional theory</subject><subject>Ferromagnetism</subject><subject>Germanium</subject><subject>Magnetism</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Tin</subject><subject>Transition metal compounds</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjL1uAjEQhC2USKCEJ0hjKbUva98PuAQESoMURSnokLlbwOjODl4fiLfHBUqdama-2R3G3iRkUkL-8XW80Tde5pkEmcG0LGQ5YCNVVFpoXemnP1_CkI2JTgAgK9AT0CO2X5gQLAbBjWs4xWCsE7F3Ztcity4G68jWvDMHh9FSlxiPVy8a22FqvDMtX882OU-fKcdEeIcx0fpo2tof0NkG6ZU9701LOH7oC3tfLX8Wn-I3-HOPFLcn34c0RluVT8qpUlCo_H9Xd3l6UGY</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Chittari, Bheema Lingam</creator><creator>Lee, Dongkyu</creator><creator>Banerjee, Nepal</creator><creator>MacDonald, Allan H</creator><creator>Hwang, Euyheon</creator><creator>Jung, Jeil</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200215</creationdate><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><author>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23758220423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Carrier density</topic><topic>Chromium</topic><topic>Density functional theory</topic><topic>Ferromagnetism</topic><topic>Germanium</topic><topic>Magnetism</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Tin</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chittari, Bheema Lingam</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>MacDonald, Allan H</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chittari, Bheema Lingam</au><au>Lee, Dongkyu</au><au>Banerjee, Nepal</au><au>MacDonald, Allan H</au><au>Hwang, Euyheon</au><au>Jung, Jeil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</atitle><jtitle>Physical review. B</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>101</volume><issue>8</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.085415</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-02, Vol.101 (8) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2375822042 |
source | American Physical Society Journals |
subjects | Antiferromagnetism Carrier density Chromium Density functional theory Ferromagnetism Germanium Magnetism Manganese Mathematical analysis Nickel Selenium Semiconductors Silicon Tin Transition metal compounds |
title | Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier-%20and%20strain-tunable%20intrinsic%20magnetism%20in%20two-dimensional%20MAX3%20transition%20metal%20chalcogenides&rft.jtitle=Physical%20review.%20B&rft.au=Chittari,%20Bheema%20Lingam&rft.date=2020-02-15&rft.volume=101&rft.issue=8&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.085415&rft_dat=%3Cproquest%3E2375822042%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375822042&rft_id=info:pmid/&rfr_iscdi=true |