Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides

We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-02, Vol.101 (8)
Hauptverfasser: Chittari, Bheema Lingam, Lee, Dongkyu, Banerjee, Nepal, MacDonald, Allan H, Hwang, Euyheon, Jung, Jeil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. B
container_volume 101
creator Chittari, Bheema Lingam
Lee, Dongkyu
Banerjee, Nepal
MacDonald, Allan H
Hwang, Euyheon
Jung, Jeil
description We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.
doi_str_mv 10.1103/PhysRevB.101.085415
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2375822042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375822042</sourcerecordid><originalsourceid>FETCH-proquest_journals_23758220423</originalsourceid><addsrcrecordid>eNqNjL1uAjEQhC2USKCEJ0hjKbUva98PuAQESoMURSnokLlbwOjODl4fiLfHBUqdama-2R3G3iRkUkL-8XW80Tde5pkEmcG0LGQ5YCNVVFpoXemnP1_CkI2JTgAgK9AT0CO2X5gQLAbBjWs4xWCsE7F3Ztcity4G68jWvDMHh9FSlxiPVy8a22FqvDMtX882OU-fKcdEeIcx0fpo2tof0NkG6ZU9701LOH7oC3tfLX8Wn-I3-HOPFLcn34c0RluVT8qpUlCo_H9Xd3l6UGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375822042</pqid></control><display><type>article</type><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><source>American Physical Society Journals</source><creator>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</creator><creatorcontrib>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</creatorcontrib><description>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.085415</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; Carrier density ; Chromium ; Density functional theory ; Ferromagnetism ; Germanium ; Magnetism ; Manganese ; Mathematical analysis ; Nickel ; Selenium ; Semiconductors ; Silicon ; Tin ; Transition metal compounds</subject><ispartof>Physical review. B, 2020-02, Vol.101 (8)</ispartof><rights>Copyright American Physical Society Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chittari, Bheema Lingam</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>MacDonald, Allan H</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><title>Physical review. B</title><description>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</description><subject>Antiferromagnetism</subject><subject>Carrier density</subject><subject>Chromium</subject><subject>Density functional theory</subject><subject>Ferromagnetism</subject><subject>Germanium</subject><subject>Magnetism</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Tin</subject><subject>Transition metal compounds</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjL1uAjEQhC2USKCEJ0hjKbUva98PuAQESoMURSnokLlbwOjODl4fiLfHBUqdama-2R3G3iRkUkL-8XW80Tde5pkEmcG0LGQ5YCNVVFpoXemnP1_CkI2JTgAgK9AT0CO2X5gQLAbBjWs4xWCsE7F3Ztcity4G68jWvDMHh9FSlxiPVy8a22FqvDMtX882OU-fKcdEeIcx0fpo2tof0NkG6ZU9701LOH7oC3tfLX8Wn-I3-HOPFLcn34c0RluVT8qpUlCo_H9Xd3l6UGY</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Chittari, Bheema Lingam</creator><creator>Lee, Dongkyu</creator><creator>Banerjee, Nepal</creator><creator>MacDonald, Allan H</creator><creator>Hwang, Euyheon</creator><creator>Jung, Jeil</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200215</creationdate><title>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</title><author>Chittari, Bheema Lingam ; Lee, Dongkyu ; Banerjee, Nepal ; MacDonald, Allan H ; Hwang, Euyheon ; Jung, Jeil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23758220423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Carrier density</topic><topic>Chromium</topic><topic>Density functional theory</topic><topic>Ferromagnetism</topic><topic>Germanium</topic><topic>Magnetism</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Tin</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chittari, Bheema Lingam</creatorcontrib><creatorcontrib>Lee, Dongkyu</creatorcontrib><creatorcontrib>Banerjee, Nepal</creatorcontrib><creatorcontrib>MacDonald, Allan H</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Jung, Jeil</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chittari, Bheema Lingam</au><au>Lee, Dongkyu</au><au>Banerjee, Nepal</au><au>MacDonald, Allan H</au><au>Hwang, Euyheon</au><au>Jung, Jeil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides</atitle><jtitle>Physical review. B</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>101</volume><issue>8</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a density functional theory study of the carrier-density and strain dependence of magnetic order in two-dimensional (2D) MAX3(M = V, Cr, Mn, Fe, Co, Ni; A = Si, Ge, Sn; and X = S, Se, Te) transition metal trichalcogenides. Our ab initio calculations show that this class of compounds includes wide and narrow gap semiconductors, metals, and half-metals, and that most of these compounds are magnetic. Although antiferromagnetic order is most common, ferromagnetism is predicted in MSiSe3 for M = Mn and Ni; in MSiTe3 for M = V and Ni; in MnGeSe3; MGeTe3 for M = Cr, Mn, and Ni; in FeSnS3; and in MSnTe3 for M = V, Mn, and Fe. Among these compounds CrGeTe3,VSnTe3, and CrSnTe3 are ferromagnetic semiconductors. Our calculations suggest that the competition between antiferromagnetic and ferromagnetic order can be substantially altered by strain engineering, and in the semiconductor case also by gating. The associated critical temperatures can be enhanced by means of carrier doping and strains.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.085415</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-02, Vol.101 (8)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2375822042
source American Physical Society Journals
subjects Antiferromagnetism
Carrier density
Chromium
Density functional theory
Ferromagnetism
Germanium
Magnetism
Manganese
Mathematical analysis
Nickel
Selenium
Semiconductors
Silicon
Tin
Transition metal compounds
title Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier-%20and%20strain-tunable%20intrinsic%20magnetism%20in%20two-dimensional%20MAX3%20transition%20metal%20chalcogenides&rft.jtitle=Physical%20review.%20B&rft.au=Chittari,%20Bheema%20Lingam&rft.date=2020-02-15&rft.volume=101&rft.issue=8&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.085415&rft_dat=%3Cproquest%3E2375822042%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375822042&rft_id=info:pmid/&rfr_iscdi=true