Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.)
Recently isolated microalgae Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp. were studied. The three novel strains contained relatively high levels of polyunsaturated fatty acids (PUFA) and n3 PUFA. However, highly unsaturated n3 FA contents were relatively low (5.7–13.0% of the tota...
Gespeichert in:
Veröffentlicht in: | Aquaculture international 2020-04, Vol.28 (2), p.711-727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 2 |
container_start_page | 711 |
container_title | Aquaculture international |
container_volume | 28 |
creator | Cardoso, C. Pereira, H. Franca, J. Matos, J. Monteiro, I. Pousão-Ferreira, P. Gomes, A. Barreira, L. Varela, J. Neng, N. Nogueira, J. M. Afonso, C. Bandarra, N. M. |
description | Recently isolated microalgae
Tetraselmis
sp. IMP3,
Tetraselmis
sp. CTP4, and
Skeletonema
sp. were studied. The three novel strains contained relatively high levels of polyunsaturated fatty acids (PUFA) and n3 PUFA. However, highly unsaturated n3 FA contents were relatively low (5.7–13.0% of the total FA). In general, eicosapentaenoic acid (EPA, 20:5 n3) contents were low (< 6.4% of the total FA). However, in
Skeletonema
biomass, EPA levels were higher than 10% of the total FA. α-Linolenic acid (ALA, 18:3 n3) and 16:3 n4 were the main PUFA in
Tetraselmis
strains and
Skeletonema
, respectively. High contents of myristic (14:0) and palmitoleic (16:1 n7) acids were found in
Skeletonema
(exceeding 20% of the total FA in both cases), whereas the
Tetraselmis
strains were rich in palmitic (16:0), 15–27% of the total FA, and oleic (18:1 n9) acids, 12–19% of the total FA. Linoleic acid (18:2 n6) content was low in
Skeletonema
(< 1% of the total FA). This microalga had the highest total polyphenol content, reaching 300–400 mg/100 g dw. Gentisic acid was the main phenolic compound in the aqueous and ethanolic extracts of this microalga. The highest antioxidant activity was displayed by
Skeletonema
. The ferric ion reducing antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods showed higher antioxidant power for
Skeletonema
sp. extracts, reaching an ABTS reduction of more than 80%. Concerning anti-inflammatory activity, ethanolic extracts of
Skeletonema
sp. exhibited the highest inhibitory capacity of cyclooxygenase-2 (COX-2), 82 ± 2%, which compares to 36 ± 9% in
Tetraselmis
sp. CTP4 and 45 ± 5% in
Tetraselmis
sp. IMP3. Aqueous extracts had always a lower anti-inflammatory capacity, 6–30%. Therefore, these microalgae have potential for multiple applications, ranging from bioactive feedstocks to aquaculture and nutraceutical uses. |
doi_str_mv | 10.1007/s10499-019-00489-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375662983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375662983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-afdd5fc0664b40b269e35472ee188390d2b44bb94f70d853f2a890f21d04a96d3</originalsourceid><addsrcrecordid>eNp9UMtKw0AUHUTB-vgBVwNuFJp655HHLKX4goqCFdwNk8xNGU0yMZNa-gn-tbEVBBcuLhfOPQ_uIeSEwYQBpBeBgVQqAjYMyExFqx0yYnEqIibFyy4ZgUrSKGEc9slBCK8AIFLJRuRz5lpnaeHr1gfXO99Q01gafI00d94UvfsYYAzUl1TQBlfVmrrgK9OjpbUrOm-qhUF6Nse-MwGr2gUa2gm9u38UY_oXnc4f5XgT8fSGFfa-wdp8X86PyF5pqoDHP_uQPF9fzae30ezh5m56OYsKwVQfmdLauCwgSWQuIeeJQhHLlCOyLBMKLM-lzHMlyxRsFouSm0xByZkFaVRixSE53fq2nX9fYuj1q192zRCpuUjjJOEqEwOLb1nDgyF0WOq2c7Xp1pqB_q5cbyvXQ-V6U7leDSKxFYWB3Cyw-7X-R_UFz-WEwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375662983</pqid></control><display><type>article</type><title>Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cardoso, C. ; Pereira, H. ; Franca, J. ; Matos, J. ; Monteiro, I. ; Pousão-Ferreira, P. ; Gomes, A. ; Barreira, L. ; Varela, J. ; Neng, N. ; Nogueira, J. M. ; Afonso, C. ; Bandarra, N. M.</creator><creatorcontrib>Cardoso, C. ; Pereira, H. ; Franca, J. ; Matos, J. ; Monteiro, I. ; Pousão-Ferreira, P. ; Gomes, A. ; Barreira, L. ; Varela, J. ; Neng, N. ; Nogueira, J. M. ; Afonso, C. ; Bandarra, N. M.</creatorcontrib><description>Recently isolated microalgae
Tetraselmis
sp. IMP3,
Tetraselmis
sp. CTP4, and
Skeletonema
sp. were studied. The three novel strains contained relatively high levels of polyunsaturated fatty acids (PUFA) and n3 PUFA. However, highly unsaturated n3 FA contents were relatively low (5.7–13.0% of the total FA). In general, eicosapentaenoic acid (EPA, 20:5 n3) contents were low (< 6.4% of the total FA). However, in
Skeletonema
biomass, EPA levels were higher than 10% of the total FA. α-Linolenic acid (ALA, 18:3 n3) and 16:3 n4 were the main PUFA in
Tetraselmis
strains and
Skeletonema
, respectively. High contents of myristic (14:0) and palmitoleic (16:1 n7) acids were found in
Skeletonema
(exceeding 20% of the total FA in both cases), whereas the
Tetraselmis
strains were rich in palmitic (16:0), 15–27% of the total FA, and oleic (18:1 n9) acids, 12–19% of the total FA. Linoleic acid (18:2 n6) content was low in
Skeletonema
(< 1% of the total FA). This microalga had the highest total polyphenol content, reaching 300–400 mg/100 g dw. Gentisic acid was the main phenolic compound in the aqueous and ethanolic extracts of this microalga. The highest antioxidant activity was displayed by
Skeletonema
. The ferric ion reducing antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods showed higher antioxidant power for
Skeletonema
sp. extracts, reaching an ABTS reduction of more than 80%. Concerning anti-inflammatory activity, ethanolic extracts of
Skeletonema
sp. exhibited the highest inhibitory capacity of cyclooxygenase-2 (COX-2), 82 ± 2%, which compares to 36 ± 9% in
Tetraselmis
sp. CTP4 and 45 ± 5% in
Tetraselmis
sp. IMP3. Aqueous extracts had always a lower anti-inflammatory capacity, 6–30%. Therefore, these microalgae have potential for multiple applications, ranging from bioactive feedstocks to aquaculture and nutraceutical uses.</description><identifier>ISSN: 0967-6120</identifier><identifier>EISSN: 1573-143X</identifier><identifier>DOI: 10.1007/s10499-019-00489-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algae ; Antioxidants ; Aquaculture ; Biochemical composition ; Biomedical and Life Sciences ; Fatty acids ; Fish oils ; Freshwater & Marine Ecology ; Functional foods & nutraceuticals ; Life Sciences ; Linoleic acid ; Lipids ; Microalgae ; Phenols ; Phytoplankton ; Polyunsaturated fatty acids ; Skeletonema ; Tetraselmis ; Zoology</subject><ispartof>Aquaculture international, 2020-04, Vol.28 (2), p.711-727</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Aquaculture International is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-afdd5fc0664b40b269e35472ee188390d2b44bb94f70d853f2a890f21d04a96d3</citedby><cites>FETCH-LOGICAL-c319t-afdd5fc0664b40b269e35472ee188390d2b44bb94f70d853f2a890f21d04a96d3</cites><orcidid>0000-0001-7273-0676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10499-019-00489-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10499-019-00489-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cardoso, C.</creatorcontrib><creatorcontrib>Pereira, H.</creatorcontrib><creatorcontrib>Franca, J.</creatorcontrib><creatorcontrib>Matos, J.</creatorcontrib><creatorcontrib>Monteiro, I.</creatorcontrib><creatorcontrib>Pousão-Ferreira, P.</creatorcontrib><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Barreira, L.</creatorcontrib><creatorcontrib>Varela, J.</creatorcontrib><creatorcontrib>Neng, N.</creatorcontrib><creatorcontrib>Nogueira, J. M.</creatorcontrib><creatorcontrib>Afonso, C.</creatorcontrib><creatorcontrib>Bandarra, N. M.</creatorcontrib><title>Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.)</title><title>Aquaculture international</title><addtitle>Aquacult Int</addtitle><description>Recently isolated microalgae
Tetraselmis
sp. IMP3,
Tetraselmis
sp. CTP4, and
Skeletonema
sp. were studied. The three novel strains contained relatively high levels of polyunsaturated fatty acids (PUFA) and n3 PUFA. However, highly unsaturated n3 FA contents were relatively low (5.7–13.0% of the total FA). In general, eicosapentaenoic acid (EPA, 20:5 n3) contents were low (< 6.4% of the total FA). However, in
Skeletonema
biomass, EPA levels were higher than 10% of the total FA. α-Linolenic acid (ALA, 18:3 n3) and 16:3 n4 were the main PUFA in
Tetraselmis
strains and
Skeletonema
, respectively. High contents of myristic (14:0) and palmitoleic (16:1 n7) acids were found in
Skeletonema
(exceeding 20% of the total FA in both cases), whereas the
Tetraselmis
strains were rich in palmitic (16:0), 15–27% of the total FA, and oleic (18:1 n9) acids, 12–19% of the total FA. Linoleic acid (18:2 n6) content was low in
Skeletonema
(< 1% of the total FA). This microalga had the highest total polyphenol content, reaching 300–400 mg/100 g dw. Gentisic acid was the main phenolic compound in the aqueous and ethanolic extracts of this microalga. The highest antioxidant activity was displayed by
Skeletonema
. The ferric ion reducing antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods showed higher antioxidant power for
Skeletonema
sp. extracts, reaching an ABTS reduction of more than 80%. Concerning anti-inflammatory activity, ethanolic extracts of
Skeletonema
sp. exhibited the highest inhibitory capacity of cyclooxygenase-2 (COX-2), 82 ± 2%, which compares to 36 ± 9% in
Tetraselmis
sp. CTP4 and 45 ± 5% in
Tetraselmis
sp. IMP3. Aqueous extracts had always a lower anti-inflammatory capacity, 6–30%. Therefore, these microalgae have potential for multiple applications, ranging from bioactive feedstocks to aquaculture and nutraceutical uses.</description><subject>Algae</subject><subject>Antioxidants</subject><subject>Aquaculture</subject><subject>Biochemical composition</subject><subject>Biomedical and Life Sciences</subject><subject>Fatty acids</subject><subject>Fish oils</subject><subject>Freshwater & Marine Ecology</subject><subject>Functional foods & nutraceuticals</subject><subject>Life Sciences</subject><subject>Linoleic acid</subject><subject>Lipids</subject><subject>Microalgae</subject><subject>Phenols</subject><subject>Phytoplankton</subject><subject>Polyunsaturated fatty acids</subject><subject>Skeletonema</subject><subject>Tetraselmis</subject><subject>Zoology</subject><issn>0967-6120</issn><issn>1573-143X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtKw0AUHUTB-vgBVwNuFJp655HHLKX4goqCFdwNk8xNGU0yMZNa-gn-tbEVBBcuLhfOPQ_uIeSEwYQBpBeBgVQqAjYMyExFqx0yYnEqIibFyy4ZgUrSKGEc9slBCK8AIFLJRuRz5lpnaeHr1gfXO99Q01gafI00d94UvfsYYAzUl1TQBlfVmrrgK9OjpbUrOm-qhUF6Nse-MwGr2gUa2gm9u38UY_oXnc4f5XgT8fSGFfa-wdp8X86PyF5pqoDHP_uQPF9fzae30ezh5m56OYsKwVQfmdLauCwgSWQuIeeJQhHLlCOyLBMKLM-lzHMlyxRsFouSm0xByZkFaVRixSE53fq2nX9fYuj1q192zRCpuUjjJOEqEwOLb1nDgyF0WOq2c7Xp1pqB_q5cbyvXQ-V6U7leDSKxFYWB3Cyw-7X-R_UFz-WEwQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cardoso, C.</creator><creator>Pereira, H.</creator><creator>Franca, J.</creator><creator>Matos, J.</creator><creator>Monteiro, I.</creator><creator>Pousão-Ferreira, P.</creator><creator>Gomes, A.</creator><creator>Barreira, L.</creator><creator>Varela, J.</creator><creator>Neng, N.</creator><creator>Nogueira, J. M.</creator><creator>Afonso, C.</creator><creator>Bandarra, N. M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7273-0676</orcidid></search><sort><creationdate>20200401</creationdate><title>Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.)</title><author>Cardoso, C. ; Pereira, H. ; Franca, J. ; Matos, J. ; Monteiro, I. ; Pousão-Ferreira, P. ; Gomes, A. ; Barreira, L. ; Varela, J. ; Neng, N. ; Nogueira, J. M. ; Afonso, C. ; Bandarra, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-afdd5fc0664b40b269e35472ee188390d2b44bb94f70d853f2a890f21d04a96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Antioxidants</topic><topic>Aquaculture</topic><topic>Biochemical composition</topic><topic>Biomedical and Life Sciences</topic><topic>Fatty acids</topic><topic>Fish oils</topic><topic>Freshwater & Marine Ecology</topic><topic>Functional foods & nutraceuticals</topic><topic>Life Sciences</topic><topic>Linoleic acid</topic><topic>Lipids</topic><topic>Microalgae</topic><topic>Phenols</topic><topic>Phytoplankton</topic><topic>Polyunsaturated fatty acids</topic><topic>Skeletonema</topic><topic>Tetraselmis</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, C.</creatorcontrib><creatorcontrib>Pereira, H.</creatorcontrib><creatorcontrib>Franca, J.</creatorcontrib><creatorcontrib>Matos, J.</creatorcontrib><creatorcontrib>Monteiro, I.</creatorcontrib><creatorcontrib>Pousão-Ferreira, P.</creatorcontrib><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Barreira, L.</creatorcontrib><creatorcontrib>Varela, J.</creatorcontrib><creatorcontrib>Neng, N.</creatorcontrib><creatorcontrib>Nogueira, J. M.</creatorcontrib><creatorcontrib>Afonso, C.</creatorcontrib><creatorcontrib>Bandarra, N. M.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Aquaculture international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, C.</au><au>Pereira, H.</au><au>Franca, J.</au><au>Matos, J.</au><au>Monteiro, I.</au><au>Pousão-Ferreira, P.</au><au>Gomes, A.</au><au>Barreira, L.</au><au>Varela, J.</au><au>Neng, N.</au><au>Nogueira, J. M.</au><au>Afonso, C.</au><au>Bandarra, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.)</atitle><jtitle>Aquaculture international</jtitle><stitle>Aquacult Int</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>711</spage><epage>727</epage><pages>711-727</pages><issn>0967-6120</issn><eissn>1573-143X</eissn><abstract>Recently isolated microalgae
Tetraselmis
sp. IMP3,
Tetraselmis
sp. CTP4, and
Skeletonema
sp. were studied. The three novel strains contained relatively high levels of polyunsaturated fatty acids (PUFA) and n3 PUFA. However, highly unsaturated n3 FA contents were relatively low (5.7–13.0% of the total FA). In general, eicosapentaenoic acid (EPA, 20:5 n3) contents were low (< 6.4% of the total FA). However, in
Skeletonema
biomass, EPA levels were higher than 10% of the total FA. α-Linolenic acid (ALA, 18:3 n3) and 16:3 n4 were the main PUFA in
Tetraselmis
strains and
Skeletonema
, respectively. High contents of myristic (14:0) and palmitoleic (16:1 n7) acids were found in
Skeletonema
(exceeding 20% of the total FA in both cases), whereas the
Tetraselmis
strains were rich in palmitic (16:0), 15–27% of the total FA, and oleic (18:1 n9) acids, 12–19% of the total FA. Linoleic acid (18:2 n6) content was low in
Skeletonema
(< 1% of the total FA). This microalga had the highest total polyphenol content, reaching 300–400 mg/100 g dw. Gentisic acid was the main phenolic compound in the aqueous and ethanolic extracts of this microalga. The highest antioxidant activity was displayed by
Skeletonema
. The ferric ion reducing antioxidant power (FRAP) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) methods showed higher antioxidant power for
Skeletonema
sp. extracts, reaching an ABTS reduction of more than 80%. Concerning anti-inflammatory activity, ethanolic extracts of
Skeletonema
sp. exhibited the highest inhibitory capacity of cyclooxygenase-2 (COX-2), 82 ± 2%, which compares to 36 ± 9% in
Tetraselmis
sp. CTP4 and 45 ± 5% in
Tetraselmis
sp. IMP3. Aqueous extracts had always a lower anti-inflammatory capacity, 6–30%. Therefore, these microalgae have potential for multiple applications, ranging from bioactive feedstocks to aquaculture and nutraceutical uses.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10499-019-00489-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7273-0676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-6120 |
ispartof | Aquaculture international, 2020-04, Vol.28 (2), p.711-727 |
issn | 0967-6120 1573-143X |
language | eng |
recordid | cdi_proquest_journals_2375662983 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algae Antioxidants Aquaculture Biochemical composition Biomedical and Life Sciences Fatty acids Fish oils Freshwater & Marine Ecology Functional foods & nutraceuticals Life Sciences Linoleic acid Lipids Microalgae Phenols Phytoplankton Polyunsaturated fatty acids Skeletonema Tetraselmis Zoology |
title | Lipid composition and some bioactivities of 3 newly isolated microalgae (Tetraselmis sp. IMP3, Tetraselmis sp. CTP4, and Skeletonema sp.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20composition%20and%20some%20bioactivities%20of%203%20newly%20isolated%20microalgae%20(Tetraselmis%20sp.%20IMP3,%20Tetraselmis%20sp.%20CTP4,%20and%20Skeletonema%20sp.)&rft.jtitle=Aquaculture%20international&rft.au=Cardoso,%20C.&rft.date=2020-04-01&rft.volume=28&rft.issue=2&rft.spage=711&rft.epage=727&rft.pages=711-727&rft.issn=0967-6120&rft.eissn=1573-143X&rft_id=info:doi/10.1007/s10499-019-00489-w&rft_dat=%3Cproquest_cross%3E2375662983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375662983&rft_id=info:pmid/&rfr_iscdi=true |