Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis

Anaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.7% when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2020-04, Vol.43 (4), p.625-636
Hauptverfasser: Yang, Ruili, Wang, Xiaojun, Guo, Yan, Zhang, Zhaoji, Chen, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 4
container_start_page 625
container_title Bioprocess and biosystems engineering
container_volume 43
creator Yang, Ruili
Wang, Xiaojun
Guo, Yan
Zhang, Zhaoji
Chen, Shaohua
description Anaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.7% when reactors were exposed to COD shocks of 1.12, 2.24 and 3.36 g L −1 (COD/N ratio 2, 4 and 6). Comprehensive assessments of water quality, microbial characteristics and isotope analysis were adopted to investigate anammox recovery. Operational performance took 8–20 days to recover; anammox relative abundance recovered after 20 days, based on the results of fluorescence in situ hybridisation and quantitative PCR; and the anammox pathway contributed to 80.0–91.5% of N-loss 40 days after COD shock terminated, based on the results of the isotope labelling experiment. Therefore, a complete recovery required 40 days. The isotope labelling method supplied a reliable reference for recovery assessment of anammox system in real-world applications.
doi_str_mv 10.1007/s00449-019-02260-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375656382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375656382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c26a95349dfefc6b5c94d2de2efe62813d1a9794330180e0c0e30b881d5172483</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0E4v0DFMgSLYGxHSdOiZanhEQDteUkk90gJ17sBEjNj-NleXQU4xlp7r1jHUKOGJwxgPw8AKRpkQCLxXkGCWyQXZYxmeQZyM2fWRZsh-yF8AzApOKwTXYEy1WqeLFLPq5ejR3N0Lqeuoaa3nSde6dLMyzezEQ9Vu4V_URNM6Cni3a-oLOHS2qdqdt-Tsewet_MavkyGtsO0yntnMVqtMbTsnXWzaO7r2kb3OCWSK0p0dqVLR6zU2jDAdlqjA14-N33ydP11ePsNrl_uLmbXdwnVcr4kFQ8M4UUaVE32FRZKasirXmNHBvMuGKiZqbIi1QIYAoQKkABpVKsliznqRL75GSdu_TuZcQw6Gc3-viJoLnIZSYzoXhU8bWq8i4Ej41e-rYzftIM9Iq7XnPXkbv-4q4hmo6_o8eyw_rX8gM6CsRaEOKqn6P_u_1P7CdN3o-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375656382</pqid></control><display><type>article</type><title>Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Yang, Ruili ; Wang, Xiaojun ; Guo, Yan ; Zhang, Zhaoji ; Chen, Shaohua</creator><creatorcontrib>Yang, Ruili ; Wang, Xiaojun ; Guo, Yan ; Zhang, Zhaoji ; Chen, Shaohua</creatorcontrib><description>Anaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.7% when reactors were exposed to COD shocks of 1.12, 2.24 and 3.36 g L −1 (COD/N ratio 2, 4 and 6). Comprehensive assessments of water quality, microbial characteristics and isotope analysis were adopted to investigate anammox recovery. Operational performance took 8–20 days to recover; anammox relative abundance recovered after 20 days, based on the results of fluorescence in situ hybridisation and quantitative PCR; and the anammox pathway contributed to 80.0–91.5% of N-loss 40 days after COD shock terminated, based on the results of the isotope labelling experiment. Therefore, a complete recovery required 40 days. The isotope labelling method supplied a reliable reference for recovery assessment of anammox system in real-world applications.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-019-02260-0</identifier><identifier>PMID: 31784829</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ammonium ; Ammonium Compounds - metabolism ; Anaerobiosis ; Biotechnology ; Chemical oxygen demand ; Chemistry ; Chemistry and Materials Science ; Environmental Engineering/Biotechnology ; Fluorescence ; Food Science ; Hybridization ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Isotope Labeling ; Labeling ; Microorganisms ; Molecular biology ; Nitrogen - metabolism ; Organic matter ; Oxidation ; Oxidation-Reduction ; Quality assessment ; Recovery ; Relative abundance ; Research Paper ; Waste Water - microbiology ; Water Microbiology ; Water Quality</subject><ispartof>Bioprocess and biosystems engineering, 2020-04, Vol.43 (4), p.625-636</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c26a95349dfefc6b5c94d2de2efe62813d1a9794330180e0c0e30b881d5172483</citedby><cites>FETCH-LOGICAL-c412t-c26a95349dfefc6b5c94d2de2efe62813d1a9794330180e0c0e30b881d5172483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-019-02260-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-019-02260-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31784829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ruili</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Zhaoji</creatorcontrib><creatorcontrib>Chen, Shaohua</creatorcontrib><title>Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Anaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.7% when reactors were exposed to COD shocks of 1.12, 2.24 and 3.36 g L −1 (COD/N ratio 2, 4 and 6). Comprehensive assessments of water quality, microbial characteristics and isotope analysis were adopted to investigate anammox recovery. Operational performance took 8–20 days to recover; anammox relative abundance recovered after 20 days, based on the results of fluorescence in situ hybridisation and quantitative PCR; and the anammox pathway contributed to 80.0–91.5% of N-loss 40 days after COD shock terminated, based on the results of the isotope labelling experiment. Therefore, a complete recovery required 40 days. The isotope labelling method supplied a reliable reference for recovery assessment of anammox system in real-world applications.</description><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Anaerobiosis</subject><subject>Biotechnology</subject><subject>Chemical oxygen demand</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fluorescence</subject><subject>Food Science</subject><subject>Hybridization</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Isotope Labeling</subject><subject>Labeling</subject><subject>Microorganisms</subject><subject>Molecular biology</subject><subject>Nitrogen - metabolism</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Quality assessment</subject><subject>Recovery</subject><subject>Relative abundance</subject><subject>Research Paper</subject><subject>Waste Water - microbiology</subject><subject>Water Microbiology</subject><subject>Water Quality</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLtOxDAQRS0E4v0DFMgSLYGxHSdOiZanhEQDteUkk90gJ17sBEjNj-NleXQU4xlp7r1jHUKOGJwxgPw8AKRpkQCLxXkGCWyQXZYxmeQZyM2fWRZsh-yF8AzApOKwTXYEy1WqeLFLPq5ejR3N0Lqeuoaa3nSde6dLMyzezEQ9Vu4V_URNM6Cni3a-oLOHS2qdqdt-Tsewet_MavkyGtsO0yntnMVqtMbTsnXWzaO7r2kb3OCWSK0p0dqVLR6zU2jDAdlqjA14-N33ydP11ePsNrl_uLmbXdwnVcr4kFQ8M4UUaVE32FRZKasirXmNHBvMuGKiZqbIi1QIYAoQKkABpVKsliznqRL75GSdu_TuZcQw6Gc3-viJoLnIZSYzoXhU8bWq8i4Ej41e-rYzftIM9Iq7XnPXkbv-4q4hmo6_o8eyw_rX8gM6CsRaEOKqn6P_u_1P7CdN3o-N</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yang, Ruili</creator><creator>Wang, Xiaojun</creator><creator>Guo, Yan</creator><creator>Zhang, Zhaoji</creator><creator>Chen, Shaohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis</title><author>Yang, Ruili ; Wang, Xiaojun ; Guo, Yan ; Zhang, Zhaoji ; Chen, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c26a95349dfefc6b5c94d2de2efe62813d1a9794330180e0c0e30b881d5172483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Anaerobiosis</topic><topic>Biotechnology</topic><topic>Chemical oxygen demand</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fluorescence</topic><topic>Food Science</topic><topic>Hybridization</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Isotope Labeling</topic><topic>Labeling</topic><topic>Microorganisms</topic><topic>Molecular biology</topic><topic>Nitrogen - metabolism</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Quality assessment</topic><topic>Recovery</topic><topic>Relative abundance</topic><topic>Research Paper</topic><topic>Waste Water - microbiology</topic><topic>Water Microbiology</topic><topic>Water Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ruili</creatorcontrib><creatorcontrib>Wang, Xiaojun</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Zhaoji</creatorcontrib><creatorcontrib>Chen, Shaohua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ruili</au><au>Wang, Xiaojun</au><au>Guo, Yan</au><au>Zhang, Zhaoji</au><au>Chen, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>43</volume><issue>4</issue><spage>625</spage><epage>636</epage><pages>625-636</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Anaerobic ammonium oxidation (anammox) pathway is sensitive to organic matter, and its recovery requires reliable evidence regarding the dominance of anammox in N-removal. This study showed that the anammox process deteriorated, with N-removal efficiencies rapidly decreasing from 87.2 to 45.7% when reactors were exposed to COD shocks of 1.12, 2.24 and 3.36 g L −1 (COD/N ratio 2, 4 and 6). Comprehensive assessments of water quality, microbial characteristics and isotope analysis were adopted to investigate anammox recovery. Operational performance took 8–20 days to recover; anammox relative abundance recovered after 20 days, based on the results of fluorescence in situ hybridisation and quantitative PCR; and the anammox pathway contributed to 80.0–91.5% of N-loss 40 days after COD shock terminated, based on the results of the isotope labelling experiment. Therefore, a complete recovery required 40 days. The isotope labelling method supplied a reliable reference for recovery assessment of anammox system in real-world applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31784829</pmid><doi>10.1007/s00449-019-02260-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2020-04, Vol.43 (4), p.625-636
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_journals_2375656382
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Ammonium
Ammonium Compounds - metabolism
Anaerobiosis
Biotechnology
Chemical oxygen demand
Chemistry
Chemistry and Materials Science
Environmental Engineering/Biotechnology
Fluorescence
Food Science
Hybridization
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Isotope Labeling
Labeling
Microorganisms
Molecular biology
Nitrogen - metabolism
Organic matter
Oxidation
Oxidation-Reduction
Quality assessment
Recovery
Relative abundance
Research Paper
Waste Water - microbiology
Water Microbiology
Water Quality
title Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20anammox%20pathway%20recovery%20after%20high%20COD%20loading%20using%20water%20quality,%20molecular%20biology%20and%20isotope%20labelling%20analysis&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Yang,%20Ruili&rft.date=2020-04-01&rft.volume=43&rft.issue=4&rft.spage=625&rft.epage=636&rft.pages=625-636&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-019-02260-0&rft_dat=%3Cproquest_cross%3E2375656382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375656382&rft_id=info:pmid/31784829&rfr_iscdi=true