Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor
Tin-nickel (Sn-Ni) alloy is a promising candidate as an anode for the lithium-ion capacitor (LIC) because it is superior in volumetric energy density compared with that of the graphite anode. However, its cycle durability requires improvement, even with a higher utilization ratio of the anode. The e...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2020/03/05, Vol.88(2), pp.74-78 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 2 |
container_start_page | 74 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 88 |
creator | NAKAMURA, Yusuke NARA, Hiroki AHN, Seongki MOMMA, Toshiyuki SUGIMOTO, Wataru OSAKA, Tetsuya |
description | Tin-nickel (Sn-Ni) alloy is a promising candidate as an anode for the lithium-ion capacitor (LIC) because it is superior in volumetric energy density compared with that of the graphite anode. However, its cycle durability requires improvement, even with a higher utilization ratio of the anode. The effect of lithium salts, LiPF6 and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is investigated for usage in the LIC in severe conditions (utilization ratio of the anode: 20%). The LIC with LiTFSI delivered its initial capacity up to ∼400 cycles, which is 4 times longer than the LIC with LiPF6. The reason for the capacity decay in the LiPF6 system is attributed to the narrowing of the potential range of the activated carbon cathode due to a widening potential range of the Sn-Ni alloy anode during operation. This widening is attributed to the loss of the active material due to peeling-off from the substrate. However, when LiTFSI is used, no such decay is observed. It is suggested that a polymer-like solid electrolyte interphase derived from TFSI− may suppress the loss of the active material. This finding can encourage the development of an Sn-based anode for LICs in combination with a mild operating condition and electrolyte additives. |
doi_str_mv | 10.5796/electrochemistry.19-00055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375503425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375503425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-e8a84bed1484512807756cf2e2ea022b27d36e3244f82cb48ed1b48b10ae29ae3</originalsourceid><addsrcrecordid>eNplkD1PwzAQhi0EEhXwH4KYXfyZOGNVPqUKBkBisxz3Ql2lcbGdIf8el0IHWO6Ge56704vQJSVTWdXlNXRgU_B2BRsXUxintMaEECmP0IRRVWImJD1GE8qFwFwKdoouYlxnhJK6rFk9Qe-PfdsN0FsofFssHI6mS7HwfTEfbQfFzRBM4zqXxt38pcdPrph1nR-LWe-XULQ-ZCut3LDBbmeZrbEu-XCOTlrTRbj46Wfo7e72df6AF8_3j_PZAlvJZcKgjBINLKlQ-VemSFXJ0rYMGBjCWMOqJS-BMyFaxWwjVEZzbSgxwGoD_Axd7fdug_8cICa99kPo80nNeCUl4YLJTNV7ygYfY4BWb4PbmDBqSvQuS_03S01r_Z1ldp_37jom8wEH04TkckT_TaU025XfDQfSrkzQ0PMv3WaJtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375503425</pqid></control><display><type>article</type><title>Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor</title><source>J-STAGE Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>NAKAMURA, Yusuke ; NARA, Hiroki ; AHN, Seongki ; MOMMA, Toshiyuki ; SUGIMOTO, Wataru ; OSAKA, Tetsuya</creator><creatorcontrib>NAKAMURA, Yusuke ; NARA, Hiroki ; AHN, Seongki ; MOMMA, Toshiyuki ; SUGIMOTO, Wataru ; OSAKA, Tetsuya</creatorcontrib><description>Tin-nickel (Sn-Ni) alloy is a promising candidate as an anode for the lithium-ion capacitor (LIC) because it is superior in volumetric energy density compared with that of the graphite anode. However, its cycle durability requires improvement, even with a higher utilization ratio of the anode. The effect of lithium salts, LiPF6 and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is investigated for usage in the LIC in severe conditions (utilization ratio of the anode: 20%). The LIC with LiTFSI delivered its initial capacity up to ∼400 cycles, which is 4 times longer than the LIC with LiPF6. The reason for the capacity decay in the LiPF6 system is attributed to the narrowing of the potential range of the activated carbon cathode due to a widening potential range of the Sn-Ni alloy anode during operation. This widening is attributed to the loss of the active material due to peeling-off from the substrate. However, when LiTFSI is used, no such decay is observed. It is suggested that a polymer-like solid electrolyte interphase derived from TFSI− may suppress the loss of the active material. This finding can encourage the development of an Sn-based anode for LICs in combination with a mild operating condition and electrolyte additives.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.19-00055</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Activated carbon ; Additives ; Anode effect ; Capacitors ; Cycle Durability ; Decay ; Durability ; Electrolytes ; Flux density ; Lithium ; Lithium ions ; Lithium Salts ; Lithium-ion Capacitor ; Nickel ; Polymers ; Salts ; Sn-Ni Alloy ; Solid electrolytes ; Substrates ; Tin base alloys ; Widening</subject><ispartof>Electrochemistry, 2020/03/05, Vol.88(2), pp.74-78</ispartof><rights>2020 The Electrochemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-e8a84bed1484512807756cf2e2ea022b27d36e3244f82cb48ed1b48b10ae29ae3</citedby><cites>FETCH-LOGICAL-c535t-e8a84bed1484512807756cf2e2ea022b27d36e3244f82cb48ed1b48b10ae29ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>NAKAMURA, Yusuke</creatorcontrib><creatorcontrib>NARA, Hiroki</creatorcontrib><creatorcontrib>AHN, Seongki</creatorcontrib><creatorcontrib>MOMMA, Toshiyuki</creatorcontrib><creatorcontrib>SUGIMOTO, Wataru</creatorcontrib><creatorcontrib>OSAKA, Tetsuya</creatorcontrib><title>Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Tin-nickel (Sn-Ni) alloy is a promising candidate as an anode for the lithium-ion capacitor (LIC) because it is superior in volumetric energy density compared with that of the graphite anode. However, its cycle durability requires improvement, even with a higher utilization ratio of the anode. The effect of lithium salts, LiPF6 and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is investigated for usage in the LIC in severe conditions (utilization ratio of the anode: 20%). The LIC with LiTFSI delivered its initial capacity up to ∼400 cycles, which is 4 times longer than the LIC with LiPF6. The reason for the capacity decay in the LiPF6 system is attributed to the narrowing of the potential range of the activated carbon cathode due to a widening potential range of the Sn-Ni alloy anode during operation. This widening is attributed to the loss of the active material due to peeling-off from the substrate. However, when LiTFSI is used, no such decay is observed. It is suggested that a polymer-like solid electrolyte interphase derived from TFSI− may suppress the loss of the active material. This finding can encourage the development of an Sn-based anode for LICs in combination with a mild operating condition and electrolyte additives.</description><subject>Activated carbon</subject><subject>Additives</subject><subject>Anode effect</subject><subject>Capacitors</subject><subject>Cycle Durability</subject><subject>Decay</subject><subject>Durability</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium Salts</subject><subject>Lithium-ion Capacitor</subject><subject>Nickel</subject><subject>Polymers</subject><subject>Salts</subject><subject>Sn-Ni Alloy</subject><subject>Solid electrolytes</subject><subject>Substrates</subject><subject>Tin base alloys</subject><subject>Widening</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkD1PwzAQhi0EEhXwH4KYXfyZOGNVPqUKBkBisxz3Ql2lcbGdIf8el0IHWO6Ge56704vQJSVTWdXlNXRgU_B2BRsXUxintMaEECmP0IRRVWImJD1GE8qFwFwKdoouYlxnhJK6rFk9Qe-PfdsN0FsofFssHI6mS7HwfTEfbQfFzRBM4zqXxt38pcdPrph1nR-LWe-XULQ-ZCut3LDBbmeZrbEu-XCOTlrTRbj46Wfo7e72df6AF8_3j_PZAlvJZcKgjBINLKlQ-VemSFXJ0rYMGBjCWMOqJS-BMyFaxWwjVEZzbSgxwGoD_Axd7fdug_8cICa99kPo80nNeCUl4YLJTNV7ygYfY4BWb4PbmDBqSvQuS_03S01r_Z1ldp_37jom8wEH04TkckT_TaU025XfDQfSrkzQ0PMv3WaJtg</recordid><startdate>20200305</startdate><enddate>20200305</enddate><creator>NAKAMURA, Yusuke</creator><creator>NARA, Hiroki</creator><creator>AHN, Seongki</creator><creator>MOMMA, Toshiyuki</creator><creator>SUGIMOTO, Wataru</creator><creator>OSAKA, Tetsuya</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20200305</creationdate><title>Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor</title><author>NAKAMURA, Yusuke ; NARA, Hiroki ; AHN, Seongki ; MOMMA, Toshiyuki ; SUGIMOTO, Wataru ; OSAKA, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-e8a84bed1484512807756cf2e2ea022b27d36e3244f82cb48ed1b48b10ae29ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Additives</topic><topic>Anode effect</topic><topic>Capacitors</topic><topic>Cycle Durability</topic><topic>Decay</topic><topic>Durability</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium Salts</topic><topic>Lithium-ion Capacitor</topic><topic>Nickel</topic><topic>Polymers</topic><topic>Salts</topic><topic>Sn-Ni Alloy</topic><topic>Solid electrolytes</topic><topic>Substrates</topic><topic>Tin base alloys</topic><topic>Widening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NAKAMURA, Yusuke</creatorcontrib><creatorcontrib>NARA, Hiroki</creatorcontrib><creatorcontrib>AHN, Seongki</creatorcontrib><creatorcontrib>MOMMA, Toshiyuki</creatorcontrib><creatorcontrib>SUGIMOTO, Wataru</creatorcontrib><creatorcontrib>OSAKA, Tetsuya</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NAKAMURA, Yusuke</au><au>NARA, Hiroki</au><au>AHN, Seongki</au><au>MOMMA, Toshiyuki</au><au>SUGIMOTO, Wataru</au><au>OSAKA, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2020-03-05</date><risdate>2020</risdate><volume>88</volume><issue>2</issue><spage>74</spage><epage>78</epage><pages>74-78</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Tin-nickel (Sn-Ni) alloy is a promising candidate as an anode for the lithium-ion capacitor (LIC) because it is superior in volumetric energy density compared with that of the graphite anode. However, its cycle durability requires improvement, even with a higher utilization ratio of the anode. The effect of lithium salts, LiPF6 and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is investigated for usage in the LIC in severe conditions (utilization ratio of the anode: 20%). The LIC with LiTFSI delivered its initial capacity up to ∼400 cycles, which is 4 times longer than the LIC with LiPF6. The reason for the capacity decay in the LiPF6 system is attributed to the narrowing of the potential range of the activated carbon cathode due to a widening potential range of the Sn-Ni alloy anode during operation. This widening is attributed to the loss of the active material due to peeling-off from the substrate. However, when LiTFSI is used, no such decay is observed. It is suggested that a polymer-like solid electrolyte interphase derived from TFSI− may suppress the loss of the active material. This finding can encourage the development of an Sn-based anode for LICs in combination with a mild operating condition and electrolyte additives.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.19-00055</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2020/03/05, Vol.88(2), pp.74-78 |
issn | 1344-3542 2186-2451 |
language | eng |
recordid | cdi_proquest_journals_2375503425 |
source | J-STAGE Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Activated carbon Additives Anode effect Capacitors Cycle Durability Decay Durability Electrolytes Flux density Lithium Lithium ions Lithium Salts Lithium-ion Capacitor Nickel Polymers Salts Sn-Ni Alloy Solid electrolytes Substrates Tin base alloys Widening |
title | Influence of Li-salts on Cycle Durability of Sn-Ni Alloy Anode for Lithium-ion Capacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Li-salts%20on%20Cycle%20Durability%20of%20Sn-Ni%20Alloy%20Anode%20for%20Lithium-ion%20Capacitor&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=NAKAMURA,%20Yusuke&rft.date=2020-03-05&rft.volume=88&rft.issue=2&rft.spage=74&rft.epage=78&rft.pages=74-78&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.19-00055&rft_dat=%3Cproquest_cross%3E2375503425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375503425&rft_id=info:pmid/&rfr_iscdi=true |