Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers

•Cobalt containing electrospun ZnO nanofibers acquire a tubular structure.•Walls of the tubes are formed by agglomerated wurtzite Zn1-yCoyO nanoparticles.•Spinel ZnxCo3-xO4 nanoparticles are located on the outer surface of Zn1-yCoyO tubes.•Tuning of sensor properties is based on change in the ZnO ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2020-03, Vol.307, p.127624, Article 127624
Hauptverfasser: Rumyantseva, M.N., Vladimirova, S.A., Platonov, V.B., Chizhov, A.S., Batuk, M., Hadermann, J., Khmelevsky, N.O., Gaskov, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 127624
container_title Sensors and actuators. B, Chemical
container_volume 307
creator Rumyantseva, M.N.
Vladimirova, S.A.
Platonov, V.B.
Chizhov, A.S.
Batuk, M.
Hadermann, J.
Khmelevsky, N.O.
Gaskov, A.M.
description •Cobalt containing electrospun ZnO nanofibers acquire a tubular structure.•Walls of the tubes are formed by agglomerated wurtzite Zn1-yCoyO nanoparticles.•Spinel ZnxCo3-xO4 nanoparticles are located on the outer surface of Zn1-yCoyO tubes.•Tuning of sensor properties is based on change in the ZnO acidity cobalt doping.•Removal of p – n junction provides excellent selectivity of ZnO-CoOx in H2S sensing. Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.
doi_str_mv 10.1016/j.snb.2019.127624
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375481188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400519318234</els_id><sourcerecordid>2375481188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7a6baf7d094e28a03b2085e661dee8005a0cf3f5cdba0db9856850faca21cb4d3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFZ_gLuA68Q7r8wEV1K0FQpdVDduhnlFEtpJnEmE_ntT4trV3Zzv3MOH0D2GAgMuH9siBVMQwFWBiSgJu0ALLAXNKQhxiRZQEZ4zAH6NblJqAYDREhaI7keT9_0x25B9lnxITfjKzCkbRjMedMw-wy5fdXTHsqBDVzfGx3SLrmp9SP7u7y7Rx-vL-2qTb3frt9XzNreU8CEXujS6Fg4q5onUQA0ByX1ZYue9nKZosDWtuXVGgzOV5KXkUGurCbaGObpED3NvH7vv0adBtd0Yw_RSESo4kxhLOaXwnLKxSyn6WvWxOep4UhjU2Y1q1eRGnd2o2c3EPM2Mn-b_ND6qZBsfrHdN9HZQrmv-oX8BHIVqRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375481188</pqid></control><display><type>article</type><title>Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers</title><source>Elsevier ScienceDirect Journals</source><creator>Rumyantseva, M.N. ; Vladimirova, S.A. ; Platonov, V.B. ; Chizhov, A.S. ; Batuk, M. ; Hadermann, J. ; Khmelevsky, N.O. ; Gaskov, A.M.</creator><creatorcontrib>Rumyantseva, M.N. ; Vladimirova, S.A. ; Platonov, V.B. ; Chizhov, A.S. ; Batuk, M. ; Hadermann, J. ; Khmelevsky, N.O. ; Gaskov, A.M.</creatorcontrib><description>•Cobalt containing electrospun ZnO nanofibers acquire a tubular structure.•Walls of the tubes are formed by agglomerated wurtzite Zn1-yCoyO nanoparticles.•Spinel ZnxCo3-xO4 nanoparticles are located on the outer surface of Zn1-yCoyO tubes.•Tuning of sensor properties is based on change in the ZnO acidity cobalt doping.•Removal of p – n junction provides excellent selectivity of ZnO-CoOx in H2S sensing. Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2019.127624</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acetates ; Cobalt acetates ; Cobalt oxides ; Cobalt sulfide ; Electron states ; Electrospinning ; Hydrogen sulfide ; Mapping ; Metal oxide composites ; Nanofibers ; Nitrogen dioxide ; Phase composition ; Recovery time ; Semiconductor gas sensor ; Sensitivity ; Tubular structure ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>Sensors and actuators. B, Chemical, 2020-03, Vol.307, p.127624, Article 127624</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Mar 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7a6baf7d094e28a03b2085e661dee8005a0cf3f5cdba0db9856850faca21cb4d3</citedby><cites>FETCH-LOGICAL-c325t-7a6baf7d094e28a03b2085e661dee8005a0cf3f5cdba0db9856850faca21cb4d3</cites><orcidid>0000-0002-3354-0885 ; 0000-0003-1411-9785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400519318234$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Rumyantseva, M.N.</creatorcontrib><creatorcontrib>Vladimirova, S.A.</creatorcontrib><creatorcontrib>Platonov, V.B.</creatorcontrib><creatorcontrib>Chizhov, A.S.</creatorcontrib><creatorcontrib>Batuk, M.</creatorcontrib><creatorcontrib>Hadermann, J.</creatorcontrib><creatorcontrib>Khmelevsky, N.O.</creatorcontrib><creatorcontrib>Gaskov, A.M.</creatorcontrib><title>Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers</title><title>Sensors and actuators. B, Chemical</title><description>•Cobalt containing electrospun ZnO nanofibers acquire a tubular structure.•Walls of the tubes are formed by agglomerated wurtzite Zn1-yCoyO nanoparticles.•Spinel ZnxCo3-xO4 nanoparticles are located on the outer surface of Zn1-yCoyO tubes.•Tuning of sensor properties is based on change in the ZnO acidity cobalt doping.•Removal of p – n junction provides excellent selectivity of ZnO-CoOx in H2S sensing. Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.</description><subject>Acetates</subject><subject>Cobalt acetates</subject><subject>Cobalt oxides</subject><subject>Cobalt sulfide</subject><subject>Electron states</subject><subject>Electrospinning</subject><subject>Hydrogen sulfide</subject><subject>Mapping</subject><subject>Metal oxide composites</subject><subject>Nanofibers</subject><subject>Nitrogen dioxide</subject><subject>Phase composition</subject><subject>Recovery time</subject><subject>Semiconductor gas sensor</subject><subject>Sensitivity</subject><subject>Tubular structure</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFZ_gLuA68Q7r8wEV1K0FQpdVDduhnlFEtpJnEmE_ntT4trV3Zzv3MOH0D2GAgMuH9siBVMQwFWBiSgJu0ALLAXNKQhxiRZQEZ4zAH6NblJqAYDREhaI7keT9_0x25B9lnxITfjKzCkbRjMedMw-wy5fdXTHsqBDVzfGx3SLrmp9SP7u7y7Rx-vL-2qTb3frt9XzNreU8CEXujS6Fg4q5onUQA0ByX1ZYue9nKZosDWtuXVGgzOV5KXkUGurCbaGObpED3NvH7vv0adBtd0Yw_RSESo4kxhLOaXwnLKxSyn6WvWxOep4UhjU2Y1q1eRGnd2o2c3EPM2Mn-b_ND6qZBsfrHdN9HZQrmv-oX8BHIVqRQ</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Rumyantseva, M.N.</creator><creator>Vladimirova, S.A.</creator><creator>Platonov, V.B.</creator><creator>Chizhov, A.S.</creator><creator>Batuk, M.</creator><creator>Hadermann, J.</creator><creator>Khmelevsky, N.O.</creator><creator>Gaskov, A.M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3354-0885</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid></search><sort><creationdate>20200315</creationdate><title>Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers</title><author>Rumyantseva, M.N. ; Vladimirova, S.A. ; Platonov, V.B. ; Chizhov, A.S. ; Batuk, M. ; Hadermann, J. ; Khmelevsky, N.O. ; Gaskov, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7a6baf7d094e28a03b2085e661dee8005a0cf3f5cdba0db9856850faca21cb4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetates</topic><topic>Cobalt acetates</topic><topic>Cobalt oxides</topic><topic>Cobalt sulfide</topic><topic>Electron states</topic><topic>Electrospinning</topic><topic>Hydrogen sulfide</topic><topic>Mapping</topic><topic>Metal oxide composites</topic><topic>Nanofibers</topic><topic>Nitrogen dioxide</topic><topic>Phase composition</topic><topic>Recovery time</topic><topic>Semiconductor gas sensor</topic><topic>Sensitivity</topic><topic>Tubular structure</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumyantseva, M.N.</creatorcontrib><creatorcontrib>Vladimirova, S.A.</creatorcontrib><creatorcontrib>Platonov, V.B.</creatorcontrib><creatorcontrib>Chizhov, A.S.</creatorcontrib><creatorcontrib>Batuk, M.</creatorcontrib><creatorcontrib>Hadermann, J.</creatorcontrib><creatorcontrib>Khmelevsky, N.O.</creatorcontrib><creatorcontrib>Gaskov, A.M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumyantseva, M.N.</au><au>Vladimirova, S.A.</au><au>Platonov, V.B.</au><au>Chizhov, A.S.</au><au>Batuk, M.</au><au>Hadermann, J.</au><au>Khmelevsky, N.O.</au><au>Gaskov, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>307</volume><spage>127624</spage><pages>127624-</pages><artnum>127624</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Cobalt containing electrospun ZnO nanofibers acquire a tubular structure.•Walls of the tubes are formed by agglomerated wurtzite Zn1-yCoyO nanoparticles.•Spinel ZnxCo3-xO4 nanoparticles are located on the outer surface of Zn1-yCoyO tubes.•Tuning of sensor properties is based on change in the ZnO acidity cobalt doping.•Removal of p – n junction provides excellent selectivity of ZnO-CoOx in H2S sensing. Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2019.127624</doi><orcidid>https://orcid.org/0000-0002-3354-0885</orcidid><orcidid>https://orcid.org/0000-0003-1411-9785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2020-03, Vol.307, p.127624, Article 127624
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2375481188
source Elsevier ScienceDirect Journals
subjects Acetates
Cobalt acetates
Cobalt oxides
Cobalt sulfide
Electron states
Electrospinning
Hydrogen sulfide
Mapping
Metal oxide composites
Nanofibers
Nitrogen dioxide
Phase composition
Recovery time
Semiconductor gas sensor
Sensitivity
Tubular structure
X ray photoelectron spectroscopy
Zinc oxide
title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-ppm%20H2S%20sensing%20by%20tubular%20ZnO-Co3O4%20nanofibers&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Rumyantseva,%20M.N.&rft.date=2020-03-15&rft.volume=307&rft.spage=127624&rft.pages=127624-&rft.artnum=127624&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2019.127624&rft_dat=%3Cproquest_cross%3E2375481188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375481188&rft_id=info:pmid/&rft_els_id=S0925400519318234&rfr_iscdi=true