Optoelectronic Perovskite Synapses for Neuromorphic Computing
Simulating the human brain for neuromorphic computing has attractive prospects in the field of artificial intelligence. Optoelectronic synapses have been considered to be important cornerstones of neuromorphic computing due to their ability to process optoelectronic input signals intelligently. In t...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-03, Vol.30 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Ma, Fumin Zhu, Yangbin Xu, Zhongwei Liu, Yang Zheng, Xiaojing Ju, Songman Li, Qianqian Ni, Ziquan Hu, Hailong Chai, Yang Wu, Chaoxing Kim, Tae Whan Li, Fushan |
description | Simulating the human brain for neuromorphic computing has attractive prospects in the field of artificial intelligence. Optoelectronic synapses have been considered to be important cornerstones of neuromorphic computing due to their ability to process optoelectronic input signals intelligently. In this work, optoelectronic synapses based on all‐inorganic perovskite nanoplates are fabricated, and the electronic and photonic synaptic plasticity is investigated. Versatile synaptic functions of the nervous system, including paired‐pulse facilitation, short‐term plasticity, long‐term plasticity, transition from short‐ to long‐term memory, and learning‐experience behavior, are successfully emulated. Furthermore, the synapses exhibit a unique memory backtracking function that can extract historical optoelectronic information. This work could be conducive to the development of artificial intelligence and inspire more research on optoelectronic synapses.
Artificial optoelectronic synapses are considered to be essential cornerstones of visual‐related artificial intelligence. A two‐terminal optoelectronic synapse employing CsPbBr3 perovskite nanoplates, which implement electronic synaptic plasticity and photonic synaptic plasticity simultaneously, is fabricated. In‐depth research shows that these devices have a unique memory backtracking function that can extract historical optoelectronic information to emulate the biological synapse. |
doi_str_mv | 10.1002/adfm.201908901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375430557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375430557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-325fe716ae63c73d6b2fa1013168c7a4963c29e7afad68cf23539b16cadadc93</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMkdiTvHZjR0PDKhQQCoUiQ5sluucIaWJg52A-u9JVVRGpjt9et-d9Ag5BzoCStmlKVw1YhQUzRWFAzIAASLllOWH-x1ej8lJjCtKQUo-HpCredN6XKNtg69Lmzxj8F_xo2wxednUpokYE-dD8oRd8JUPzXsPTXzVdG1Zv52SI2fWEc9-55AspreLyX06m989TK5nqeU5h5SzzKEEYVBwK3khlswZoMBB5FaasepjplAaZ4o-cYxnXC1BWFOYwio-JBe7s03wnx3GVq98F-r-o2ZcZmNOs0z21GhH2eBjDOh0E8rKhI0GqreG9NaQ3hvqC2pX-C7XuPmH1tc308e_7g-WImrl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375430557</pqid></control><display><type>article</type><title>Optoelectronic Perovskite Synapses for Neuromorphic Computing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Fumin ; Zhu, Yangbin ; Xu, Zhongwei ; Liu, Yang ; Zheng, Xiaojing ; Ju, Songman ; Li, Qianqian ; Ni, Ziquan ; Hu, Hailong ; Chai, Yang ; Wu, Chaoxing ; Kim, Tae Whan ; Li, Fushan</creator><creatorcontrib>Ma, Fumin ; Zhu, Yangbin ; Xu, Zhongwei ; Liu, Yang ; Zheng, Xiaojing ; Ju, Songman ; Li, Qianqian ; Ni, Ziquan ; Hu, Hailong ; Chai, Yang ; Wu, Chaoxing ; Kim, Tae Whan ; Li, Fushan</creatorcontrib><description>Simulating the human brain for neuromorphic computing has attractive prospects in the field of artificial intelligence. Optoelectronic synapses have been considered to be important cornerstones of neuromorphic computing due to their ability to process optoelectronic input signals intelligently. In this work, optoelectronic synapses based on all‐inorganic perovskite nanoplates are fabricated, and the electronic and photonic synaptic plasticity is investigated. Versatile synaptic functions of the nervous system, including paired‐pulse facilitation, short‐term plasticity, long‐term plasticity, transition from short‐ to long‐term memory, and learning‐experience behavior, are successfully emulated. Furthermore, the synapses exhibit a unique memory backtracking function that can extract historical optoelectronic information. This work could be conducive to the development of artificial intelligence and inspire more research on optoelectronic synapses.
Artificial optoelectronic synapses are considered to be essential cornerstones of visual‐related artificial intelligence. A two‐terminal optoelectronic synapse employing CsPbBr3 perovskite nanoplates, which implement electronic synaptic plasticity and photonic synaptic plasticity simultaneously, is fabricated. In‐depth research shows that these devices have a unique memory backtracking function that can extract historical optoelectronic information to emulate the biological synapse.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908901</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐inorganic perovskite nanoplate ; Artificial intelligence ; Computation ; Computer simulation ; Materials science ; memory backtracking ; Nervous system ; Neuromorphic computing ; optoelectronic synapse ; Optoelectronics ; Perovskites ; Photonics ; Signal processing ; Synapses</subject><ispartof>Advanced functional materials, 2020-03, Vol.30 (11), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-325fe716ae63c73d6b2fa1013168c7a4963c29e7afad68cf23539b16cadadc93</citedby><cites>FETCH-LOGICAL-c3831-325fe716ae63c73d6b2fa1013168c7a4963c29e7afad68cf23539b16cadadc93</cites><orcidid>0000-0001-6899-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908901$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908901$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Zhu, Yangbin</creatorcontrib><creatorcontrib>Xu, Zhongwei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Xiaojing</creatorcontrib><creatorcontrib>Ju, Songman</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Ni, Ziquan</creatorcontrib><creatorcontrib>Hu, Hailong</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Wu, Chaoxing</creatorcontrib><creatorcontrib>Kim, Tae Whan</creatorcontrib><creatorcontrib>Li, Fushan</creatorcontrib><title>Optoelectronic Perovskite Synapses for Neuromorphic Computing</title><title>Advanced functional materials</title><description>Simulating the human brain for neuromorphic computing has attractive prospects in the field of artificial intelligence. Optoelectronic synapses have been considered to be important cornerstones of neuromorphic computing due to their ability to process optoelectronic input signals intelligently. In this work, optoelectronic synapses based on all‐inorganic perovskite nanoplates are fabricated, and the electronic and photonic synaptic plasticity is investigated. Versatile synaptic functions of the nervous system, including paired‐pulse facilitation, short‐term plasticity, long‐term plasticity, transition from short‐ to long‐term memory, and learning‐experience behavior, are successfully emulated. Furthermore, the synapses exhibit a unique memory backtracking function that can extract historical optoelectronic information. This work could be conducive to the development of artificial intelligence and inspire more research on optoelectronic synapses.
Artificial optoelectronic synapses are considered to be essential cornerstones of visual‐related artificial intelligence. A two‐terminal optoelectronic synapse employing CsPbBr3 perovskite nanoplates, which implement electronic synaptic plasticity and photonic synaptic plasticity simultaneously, is fabricated. In‐depth research shows that these devices have a unique memory backtracking function that can extract historical optoelectronic information to emulate the biological synapse.</description><subject>all‐inorganic perovskite nanoplate</subject><subject>Artificial intelligence</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Materials science</subject><subject>memory backtracking</subject><subject>Nervous system</subject><subject>Neuromorphic computing</subject><subject>optoelectronic synapse</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Photonics</subject><subject>Signal processing</subject><subject>Synapses</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMkdiTvHZjR0PDKhQQCoUiQ5sluucIaWJg52A-u9JVVRGpjt9et-d9Ag5BzoCStmlKVw1YhQUzRWFAzIAASLllOWH-x1ej8lJjCtKQUo-HpCredN6XKNtg69Lmzxj8F_xo2wxednUpokYE-dD8oRd8JUPzXsPTXzVdG1Zv52SI2fWEc9-55AspreLyX06m989TK5nqeU5h5SzzKEEYVBwK3khlswZoMBB5FaasepjplAaZ4o-cYxnXC1BWFOYwio-JBe7s03wnx3GVq98F-r-o2ZcZmNOs0z21GhH2eBjDOh0E8rKhI0GqreG9NaQ3hvqC2pX-C7XuPmH1tc308e_7g-WImrl</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ma, Fumin</creator><creator>Zhu, Yangbin</creator><creator>Xu, Zhongwei</creator><creator>Liu, Yang</creator><creator>Zheng, Xiaojing</creator><creator>Ju, Songman</creator><creator>Li, Qianqian</creator><creator>Ni, Ziquan</creator><creator>Hu, Hailong</creator><creator>Chai, Yang</creator><creator>Wu, Chaoxing</creator><creator>Kim, Tae Whan</creator><creator>Li, Fushan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6899-4986</orcidid></search><sort><creationdate>20200301</creationdate><title>Optoelectronic Perovskite Synapses for Neuromorphic Computing</title><author>Ma, Fumin ; Zhu, Yangbin ; Xu, Zhongwei ; Liu, Yang ; Zheng, Xiaojing ; Ju, Songman ; Li, Qianqian ; Ni, Ziquan ; Hu, Hailong ; Chai, Yang ; Wu, Chaoxing ; Kim, Tae Whan ; Li, Fushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-325fe716ae63c73d6b2fa1013168c7a4963c29e7afad68cf23539b16cadadc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>all‐inorganic perovskite nanoplate</topic><topic>Artificial intelligence</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Materials science</topic><topic>memory backtracking</topic><topic>Nervous system</topic><topic>Neuromorphic computing</topic><topic>optoelectronic synapse</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Photonics</topic><topic>Signal processing</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Zhu, Yangbin</creatorcontrib><creatorcontrib>Xu, Zhongwei</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Xiaojing</creatorcontrib><creatorcontrib>Ju, Songman</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Ni, Ziquan</creatorcontrib><creatorcontrib>Hu, Hailong</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Wu, Chaoxing</creatorcontrib><creatorcontrib>Kim, Tae Whan</creatorcontrib><creatorcontrib>Li, Fushan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Fumin</au><au>Zhu, Yangbin</au><au>Xu, Zhongwei</au><au>Liu, Yang</au><au>Zheng, Xiaojing</au><au>Ju, Songman</au><au>Li, Qianqian</au><au>Ni, Ziquan</au><au>Hu, Hailong</au><au>Chai, Yang</au><au>Wu, Chaoxing</au><au>Kim, Tae Whan</au><au>Li, Fushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic Perovskite Synapses for Neuromorphic Computing</atitle><jtitle>Advanced functional materials</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Simulating the human brain for neuromorphic computing has attractive prospects in the field of artificial intelligence. Optoelectronic synapses have been considered to be important cornerstones of neuromorphic computing due to their ability to process optoelectronic input signals intelligently. In this work, optoelectronic synapses based on all‐inorganic perovskite nanoplates are fabricated, and the electronic and photonic synaptic plasticity is investigated. Versatile synaptic functions of the nervous system, including paired‐pulse facilitation, short‐term plasticity, long‐term plasticity, transition from short‐ to long‐term memory, and learning‐experience behavior, are successfully emulated. Furthermore, the synapses exhibit a unique memory backtracking function that can extract historical optoelectronic information. This work could be conducive to the development of artificial intelligence and inspire more research on optoelectronic synapses.
Artificial optoelectronic synapses are considered to be essential cornerstones of visual‐related artificial intelligence. A two‐terminal optoelectronic synapse employing CsPbBr3 perovskite nanoplates, which implement electronic synaptic plasticity and photonic synaptic plasticity simultaneously, is fabricated. In‐depth research shows that these devices have a unique memory backtracking function that can extract historical optoelectronic information to emulate the biological synapse.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908901</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6899-4986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-03, Vol.30 (11), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2375430557 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | all‐inorganic perovskite nanoplate Artificial intelligence Computation Computer simulation Materials science memory backtracking Nervous system Neuromorphic computing optoelectronic synapse Optoelectronics Perovskites Photonics Signal processing Synapses |
title | Optoelectronic Perovskite Synapses for Neuromorphic Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20Perovskite%20Synapses%20for%20Neuromorphic%20Computing&rft.jtitle=Advanced%20functional%20materials&rft.au=Ma,%20Fumin&rft.date=2020-03-01&rft.volume=30&rft.issue=11&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908901&rft_dat=%3Cproquest_cross%3E2375430557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375430557&rft_id=info:pmid/&rfr_iscdi=true |