Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma

Objectives To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Methods Radiomics features ( n = 6472) were extracted from multiparametric MRI inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2020-04, Vol.30 (4), p.2142-2151
Hauptverfasser: Kim, Minjae, Jung, So Yeong, Park, Ji Eun, Jo, Yeongheun, Park, Seo Young, Nam, Soo Jung, Kim, Jeong Hoon, Kim, Ho Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2151
container_issue 4
container_start_page 2142
container_title European radiology
container_volume 30
creator Kim, Minjae
Jung, So Yeong
Park, Ji Eun
Jo, Yeongheun
Park, Seo Young
Nam, Soo Jung
Kim, Jeong Hoon
Kim, Ho Sung
description Objectives To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Methods Radiomics features ( n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set ( n = 28). Results The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model. Conclusion Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role. Key Points • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.
doi_str_mv 10.1007/s00330-019-06548-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2375282328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375282328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-50d46014eb644b19aebbbe3923f5eef5e2acc6f56cc33fdfd9072b982d22535e3</originalsourceid><addsrcrecordid>eNp9kU1LXDEUhkOp6Gj9A12UQDd1kZqv-5Fl0VYHFEHsOuQm514jc2-mSW5l_k1_auPMVHddhEPIe5438CD0kdGvjNLmPFEqBCWUKULrSrZEvEMLJgUnjLbyPVpQJVrSKCWP0HFKT5RSxWRziI4Ea3krmVygP5e-7-fkw0SwmRxeQ9xfn8EPjxkcvr1f4micD6O3CY_BwQqPZoPXEZy3GfsUrM_RZMAOHjcuhgEmkwB_WV5en-FxziYX4Baf5zFEbIYhQkr-N0xlYD9ht_0F4FV4hoiHUgd4WJVK8wEd9GaV4HQ_T9DPH98fLq7Jzd3V8uLbDbFSskwq6mRNmYSulrJjykDXdSAUF30FUA431tZ9VVsrRO96p2jDO9Vyx3klKhAn6POOu47h1wwp66cwx6lUai6airdc8Lak-C5lY0gpQq_X0Y8mbjSj-kWK3knRRYreStGiLH3ao-duBPe68s9CCYhdIJWnaYD41v0f7F888JsD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375282328</pqid></control><display><type>article</type><title>Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Minjae ; Jung, So Yeong ; Park, Ji Eun ; Jo, Yeongheun ; Park, Seo Young ; Nam, Soo Jung ; Kim, Jeong Hoon ; Kim, Ho Sung</creator><creatorcontrib>Kim, Minjae ; Jung, So Yeong ; Park, Ji Eun ; Jo, Yeongheun ; Park, Seo Young ; Nam, Soo Jung ; Kim, Jeong Hoon ; Kim, Ho Sung</creatorcontrib><description>Objectives To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Methods Radiomics features ( n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set ( n = 28). Results The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model. Conclusion Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role. Key Points • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-019-06548-3</identifier><identifier>PMID: 31828414</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Algorithms ; Area Under Curve ; Astrocytoma - diagnostic imaging ; Astrocytoma - genetics ; Astrocytoma - pathology ; Blood volume ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Cerebral blood flow ; Cerebral Blood Volume ; Computational Biology ; Correlation coefficients ; Dehydrogenase ; Dehydrogenases ; Diagnostic Radiology ; Diagnostic systems ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging ; Feature extraction ; Female ; Generalized linear models ; Glioma ; Glioma - diagnostic imaging ; Glioma - genetics ; Glioma - pathology ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - genetics ; Learning algorithms ; Machine Learning ; Magnetic Resonance Angiography ; Magnetic Resonance Imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multiparametric Magnetic Resonance Imaging ; Mutation ; Neoplasm Grading ; Neuro ; Neuroradiology ; Oligodendroglioma - diagnostic imaging ; Oligodendroglioma - genetics ; Oligodendroglioma - pathology ; Perfusion ; Radiology ; Radiomics ; Retrospective Studies ; ROC Curve ; Segmentation ; Stability ; Statistical models ; Tumors ; Ultrasound ; Young Adult</subject><ispartof>European radiology, 2020-04, Vol.30 (4), p.2142-2151</ispartof><rights>European Society of Radiology 2019</rights><rights>European Radiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-50d46014eb644b19aebbbe3923f5eef5e2acc6f56cc33fdfd9072b982d22535e3</citedby><cites>FETCH-LOGICAL-c441t-50d46014eb644b19aebbbe3923f5eef5e2acc6f56cc33fdfd9072b982d22535e3</cites><orcidid>0000-0002-4419-4682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-019-06548-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-019-06548-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31828414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Minjae</creatorcontrib><creatorcontrib>Jung, So Yeong</creatorcontrib><creatorcontrib>Park, Ji Eun</creatorcontrib><creatorcontrib>Jo, Yeongheun</creatorcontrib><creatorcontrib>Park, Seo Young</creatorcontrib><creatorcontrib>Nam, Soo Jung</creatorcontrib><creatorcontrib>Kim, Jeong Hoon</creatorcontrib><creatorcontrib>Kim, Ho Sung</creatorcontrib><title>Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Methods Radiomics features ( n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set ( n = 28). Results The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model. Conclusion Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role. Key Points • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Astrocytoma - diagnostic imaging</subject><subject>Astrocytoma - genetics</subject><subject>Astrocytoma - pathology</subject><subject>Blood volume</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Cerebral blood flow</subject><subject>Cerebral Blood Volume</subject><subject>Computational Biology</subject><subject>Correlation coefficients</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Generalized linear models</subject><subject>Glioma</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Angiography</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multiparametric Magnetic Resonance Imaging</subject><subject>Mutation</subject><subject>Neoplasm Grading</subject><subject>Neuro</subject><subject>Neuroradiology</subject><subject>Oligodendroglioma - diagnostic imaging</subject><subject>Oligodendroglioma - genetics</subject><subject>Oligodendroglioma - pathology</subject><subject>Perfusion</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Segmentation</subject><subject>Stability</subject><subject>Statistical models</subject><subject>Tumors</subject><subject>Ultrasound</subject><subject>Young Adult</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LXDEUhkOp6Gj9A12UQDd1kZqv-5Fl0VYHFEHsOuQm514jc2-mSW5l_k1_auPMVHddhEPIe5438CD0kdGvjNLmPFEqBCWUKULrSrZEvEMLJgUnjLbyPVpQJVrSKCWP0HFKT5RSxWRziI4Ea3krmVygP5e-7-fkw0SwmRxeQ9xfn8EPjxkcvr1f4micD6O3CY_BwQqPZoPXEZy3GfsUrM_RZMAOHjcuhgEmkwB_WV5en-FxziYX4Baf5zFEbIYhQkr-N0xlYD9ht_0F4FV4hoiHUgd4WJVK8wEd9GaV4HQ_T9DPH98fLq7Jzd3V8uLbDbFSskwq6mRNmYSulrJjykDXdSAUF30FUA431tZ9VVsrRO96p2jDO9Vyx3klKhAn6POOu47h1wwp66cwx6lUai6airdc8Lak-C5lY0gpQq_X0Y8mbjSj-kWK3knRRYreStGiLH3ao-duBPe68s9CCYhdIJWnaYD41v0f7F888JsD</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kim, Minjae</creator><creator>Jung, So Yeong</creator><creator>Park, Ji Eun</creator><creator>Jo, Yeongheun</creator><creator>Park, Seo Young</creator><creator>Nam, Soo Jung</creator><creator>Kim, Jeong Hoon</creator><creator>Kim, Ho Sung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4419-4682</orcidid></search><sort><creationdate>20200401</creationdate><title>Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma</title><author>Kim, Minjae ; Jung, So Yeong ; Park, Ji Eun ; Jo, Yeongheun ; Park, Seo Young ; Nam, Soo Jung ; Kim, Jeong Hoon ; Kim, Ho Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-50d46014eb644b19aebbbe3923f5eef5e2acc6f56cc33fdfd9072b982d22535e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Astrocytoma - diagnostic imaging</topic><topic>Astrocytoma - genetics</topic><topic>Astrocytoma - pathology</topic><topic>Blood volume</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Cerebral blood flow</topic><topic>Cerebral Blood Volume</topic><topic>Computational Biology</topic><topic>Correlation coefficients</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Generalized linear models</topic><topic>Glioma</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Angiography</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multiparametric Magnetic Resonance Imaging</topic><topic>Mutation</topic><topic>Neoplasm Grading</topic><topic>Neuro</topic><topic>Neuroradiology</topic><topic>Oligodendroglioma - diagnostic imaging</topic><topic>Oligodendroglioma - genetics</topic><topic>Oligodendroglioma - pathology</topic><topic>Perfusion</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Segmentation</topic><topic>Stability</topic><topic>Statistical models</topic><topic>Tumors</topic><topic>Ultrasound</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Minjae</creatorcontrib><creatorcontrib>Jung, So Yeong</creatorcontrib><creatorcontrib>Park, Ji Eun</creatorcontrib><creatorcontrib>Jo, Yeongheun</creatorcontrib><creatorcontrib>Park, Seo Young</creatorcontrib><creatorcontrib>Nam, Soo Jung</creatorcontrib><creatorcontrib>Kim, Jeong Hoon</creatorcontrib><creatorcontrib>Kim, Ho Sung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Minjae</au><au>Jung, So Yeong</au><au>Park, Ji Eun</au><au>Jo, Yeongheun</au><au>Park, Seo Young</au><au>Nam, Soo Jung</au><au>Kim, Jeong Hoon</au><au>Kim, Ho Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>2142</spage><epage>2151</epage><pages>2142-2151</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To determine whether diffusion- and perfusion-weighted MRI–based radiomics features can improve prediction of isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in lower grade gliomas (LGGs) Methods Radiomics features ( n = 6472) were extracted from multiparametric MRI including conventional MRI, apparent diffusion coefficient (ADC), and normalized cerebral blood volume, acquired on 127 LGG patients with determined IDH mutation status and grade (WHO II or III). Radiomics models were constructed using machine learning–based feature selection and generalized linear model classifiers. Segmentation stability was calculated between two readers using concordance correlation coefficients (CCCs). Diagnostic performance to predict IDH mutation and tumor grade was compared between the multiparametric and conventional MRI radiomics models using the area under the receiver operating characteristics curve (AUC). The models were tested using a temporally independent validation set ( n = 28). Results The multiparametric MRI radiomics model was optimized with a random forest feature selector, with segmentation stability of a CCC threshold of 0.8. For IDH mutation, multiparametric MR radiomics showed similar performance (AUC 0.795) to the conventional radiomics model (AUC 0.729). In tumor grading, multiparametric model with ADC features showed higher performance (AUC 0.932) than the conventional model (AUC 0.555). The independent validation set showed the same trend with AUCs of 0.747 for IDH prediction and 0.819 for tumor grading with multiparametric MRI radiomics model. Conclusion Multiparametric MRI radiomics model showed improved diagnostic performance in tumor grading and comparable diagnostic performance in IDH mutation status, with ADC features playing a significant role. Key Points • The multiparametric MRI radiomics model was comparable with conventional MRI radiomics model in predicting IDH mutation. • The multiparametric MRI radiomics model outperformed conventional MRI in glioma grading. • Apparent diffusion coefficient played an important role in glioma grading and predicting IDH mutation status using radiomics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31828414</pmid><doi>10.1007/s00330-019-06548-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4419-4682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2020-04, Vol.30 (4), p.2142-2151
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_journals_2375282328
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adult
Aged
Aged, 80 and over
Algorithms
Area Under Curve
Astrocytoma - diagnostic imaging
Astrocytoma - genetics
Astrocytoma - pathology
Blood volume
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Cerebral blood flow
Cerebral Blood Volume
Computational Biology
Correlation coefficients
Dehydrogenase
Dehydrogenases
Diagnostic Radiology
Diagnostic systems
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
Feature extraction
Female
Generalized linear models
Glioma
Glioma - diagnostic imaging
Glioma - genetics
Glioma - pathology
Humans
Imaging
Internal Medicine
Interventional Radiology
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Learning algorithms
Machine Learning
Magnetic Resonance Angiography
Magnetic Resonance Imaging
Male
Medicine
Medicine & Public Health
Middle Aged
Multiparametric Magnetic Resonance Imaging
Mutation
Neoplasm Grading
Neuro
Neuroradiology
Oligodendroglioma - diagnostic imaging
Oligodendroglioma - genetics
Oligodendroglioma - pathology
Perfusion
Radiology
Radiomics
Retrospective Studies
ROC Curve
Segmentation
Stability
Statistical models
Tumors
Ultrasound
Young Adult
title Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-%20and%20perfusion-weighted%20MRI%20radiomics%20model%20may%20predict%20isocitrate%20dehydrogenase%20(IDH)%20mutation%20and%20tumor%20aggressiveness%20in%20diffuse%20lower%20grade%20glioma&rft.jtitle=European%20radiology&rft.au=Kim,%20Minjae&rft.date=2020-04-01&rft.volume=30&rft.issue=4&rft.spage=2142&rft.epage=2151&rft.pages=2142-2151&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-019-06548-3&rft_dat=%3Cproquest_cross%3E2375282328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375282328&rft_id=info:pmid/31828414&rfr_iscdi=true