Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques

This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-7
Hauptverfasser: Chae, Yoon Seok, Kim, Ji Hyung, Quach, Huu Luong, Moon, Jae Hyung, Sung, Hae-Jin, Kim, Changhyun, Go, Byeong-Soo, Park, Minwon, Kim, Yeong-Chun, Kim, Hyung-Wook, Jo, Young-Sik, Kim, Ho Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 30
creator Chae, Yoon Seok
Kim, Ji Hyung
Quach, Huu Luong
Moon, Jae Hyung
Sung, Hae-Jin
Kim, Changhyun
Go, Byeong-Soo
Park, Minwon
Kim, Yeong-Chun
Kim, Hyung-Wook
Jo, Young-Sik
Kim, Ho Min
description This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore environment, various electric insulation techniques (EITs) for HTS field coils (FCs), such as no-insulation, metal insulation, and metal-insulator transition insulation, are considered in this study. Using the time-transient solver of the three-dimensional (3D) electromagnetic finite element analysis (FEA), we investigated the electromagnetic characteristics of the HTSG with the three EITs in terms of the electrical output of the HTSG and the critical current of the FCs. To analyze the charging characteristic of the HTS FCs with the three EITs in steady-state operation as well as the electrical in transient-state operation, electric equivalent circuit models are built with key parameters based on the electromagnetic FEA results. Finally, the performances of the HTS FCs are discussed and evaluated in terms of the electromagnetic response and stability characteristics.
doi_str_mv 10.1109/TASC.2020.2973589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2374685657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998346</ieee_id><sourcerecordid>2374685657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-710d2266176a1fde19e7d39b858d8e6b367f40fc0a217227feace5236361f5313</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEjD4AYhLJM4dcdJ89DgV9iENIbEBxypr3RFUkpF0h1347XRs4mRLfl5bfpLkBugQgOb3y9GiGDLK6JDligudnyQXIIROmQBx2vdUQKoZ4-fJZYyflEKmM3GR_DxgtGtHjKvJyJl2F20kviHT5YK8-M6HdGyxrUnhbfs3MARo-vSeFq2J8Q-boMNgerSHXLQ1BuvW5M0E67eRPLZYdcFWZObitjWd9Y4ssfpw9nuL8So5a0wb8fpYB8nr-HFZTNP582RWjOZpxXLepQpozZiUoKSBpkbIUdU8X2mha41yxaVqMtpU1DBQjKkGTYWCccklNIIDHyR3h72b4Pd3u_LTb0P_bywZV5nUQgrVU3CgquBjDNiUm2C_TNiVQMu95nKvudxrLo-a-8ztIWMR8Z_Xea55JvkvLEF36Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374685657</pqid></control><display><type>article</type><title>Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Chae, Yoon Seok ; Kim, Ji Hyung ; Quach, Huu Luong ; Moon, Jae Hyung ; Sung, Hae-Jin ; Kim, Changhyun ; Go, Byeong-Soo ; Park, Minwon ; Kim, Yeong-Chun ; Kim, Hyung-Wook ; Jo, Young-Sik ; Kim, Ho Min</creator><creatorcontrib>Chae, Yoon Seok ; Kim, Ji Hyung ; Quach, Huu Luong ; Moon, Jae Hyung ; Sung, Hae-Jin ; Kim, Changhyun ; Go, Byeong-Soo ; Park, Minwon ; Kim, Yeong-Chun ; Kim, Hyung-Wook ; Jo, Young-Sik ; Kim, Ho Min</creatorcontrib><description>This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore environment, various electric insulation techniques (EITs) for HTS field coils (FCs), such as no-insulation, metal insulation, and metal-insulator transition insulation, are considered in this study. Using the time-transient solver of the three-dimensional (3D) electromagnetic finite element analysis (FEA), we investigated the electromagnetic characteristics of the HTSG with the three EITs in terms of the electrical output of the HTSG and the critical current of the FCs. To analyze the charging characteristic of the HTS FCs with the three EITs in steady-state operation as well as the electrical in transient-state operation, electric equivalent circuit models are built with key parameters based on the electromagnetic FEA results. Finally, the performances of the HTS FCs are discussed and evaluated in terms of the electromagnetic response and stability characteristics.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2973589</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Critical current (superconductivity) ; Design analysis ; Electromagnetic properties ; Electromagnetics ; Equivalent circuits ; Field coils ; Finite element method ; High temperature ; High-temperature superconducting generator ; High-temperature superconductors ; HTS electric insulation technique ; Insulation ; Insulators ; Integrated circuits ; Metal-insulator transition ; Numerical analysis ; Offshore energy sources ; offshore wind power ; Stability analysis ; stability characteristic ; Superconducting magnets ; Wind power ; Wind turbines ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-710d2266176a1fde19e7d39b858d8e6b367f40fc0a217227feace5236361f5313</citedby><cites>FETCH-LOGICAL-c293t-710d2266176a1fde19e7d39b858d8e6b367f40fc0a217227feace5236361f5313</cites><orcidid>0000-0001-8498-8981 ; 0000-0001-6752-419X ; 0000-0001-8497-749X ; 0000-0002-6374-669X ; 0000-0003-3050-5029 ; 0000-0002-8044-9304 ; 0000-0002-1950-1986 ; 0000-0002-7222-2417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8998346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chae, Yoon Seok</creatorcontrib><creatorcontrib>Kim, Ji Hyung</creatorcontrib><creatorcontrib>Quach, Huu Luong</creatorcontrib><creatorcontrib>Moon, Jae Hyung</creatorcontrib><creatorcontrib>Sung, Hae-Jin</creatorcontrib><creatorcontrib>Kim, Changhyun</creatorcontrib><creatorcontrib>Go, Byeong-Soo</creatorcontrib><creatorcontrib>Park, Minwon</creatorcontrib><creatorcontrib>Kim, Yeong-Chun</creatorcontrib><creatorcontrib>Kim, Hyung-Wook</creatorcontrib><creatorcontrib>Jo, Young-Sik</creatorcontrib><creatorcontrib>Kim, Ho Min</creatorcontrib><title>Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore environment, various electric insulation techniques (EITs) for HTS field coils (FCs), such as no-insulation, metal insulation, and metal-insulator transition insulation, are considered in this study. Using the time-transient solver of the three-dimensional (3D) electromagnetic finite element analysis (FEA), we investigated the electromagnetic characteristics of the HTSG with the three EITs in terms of the electrical output of the HTSG and the critical current of the FCs. To analyze the charging characteristic of the HTS FCs with the three EITs in steady-state operation as well as the electrical in transient-state operation, electric equivalent circuit models are built with key parameters based on the electromagnetic FEA results. Finally, the performances of the HTS FCs are discussed and evaluated in terms of the electromagnetic response and stability characteristics.</description><subject>Coils</subject><subject>Critical current (superconductivity)</subject><subject>Design analysis</subject><subject>Electromagnetic properties</subject><subject>Electromagnetics</subject><subject>Equivalent circuits</subject><subject>Field coils</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>High-temperature superconducting generator</subject><subject>High-temperature superconductors</subject><subject>HTS electric insulation technique</subject><subject>Insulation</subject><subject>Insulators</subject><subject>Integrated circuits</subject><subject>Metal-insulator transition</subject><subject>Numerical analysis</subject><subject>Offshore energy sources</subject><subject>offshore wind power</subject><subject>Stability analysis</subject><subject>stability characteristic</subject><subject>Superconducting magnets</subject><subject>Wind power</subject><subject>Wind turbines</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhisEEjD4AYhLJM4dcdJ89DgV9iENIbEBxypr3RFUkpF0h1347XRs4mRLfl5bfpLkBugQgOb3y9GiGDLK6JDligudnyQXIIROmQBx2vdUQKoZ4-fJZYyflEKmM3GR_DxgtGtHjKvJyJl2F20kviHT5YK8-M6HdGyxrUnhbfs3MARo-vSeFq2J8Q-boMNgerSHXLQ1BuvW5M0E67eRPLZYdcFWZObitjWd9Y4ssfpw9nuL8So5a0wb8fpYB8nr-HFZTNP582RWjOZpxXLepQpozZiUoKSBpkbIUdU8X2mha41yxaVqMtpU1DBQjKkGTYWCccklNIIDHyR3h72b4Pd3u_LTb0P_bywZV5nUQgrVU3CgquBjDNiUm2C_TNiVQMu95nKvudxrLo-a-8ztIWMR8Z_Xea55JvkvLEF36Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Chae, Yoon Seok</creator><creator>Kim, Ji Hyung</creator><creator>Quach, Huu Luong</creator><creator>Moon, Jae Hyung</creator><creator>Sung, Hae-Jin</creator><creator>Kim, Changhyun</creator><creator>Go, Byeong-Soo</creator><creator>Park, Minwon</creator><creator>Kim, Yeong-Chun</creator><creator>Kim, Hyung-Wook</creator><creator>Jo, Young-Sik</creator><creator>Kim, Ho Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8498-8981</orcidid><orcidid>https://orcid.org/0000-0001-6752-419X</orcidid><orcidid>https://orcid.org/0000-0001-8497-749X</orcidid><orcidid>https://orcid.org/0000-0002-6374-669X</orcidid><orcidid>https://orcid.org/0000-0003-3050-5029</orcidid><orcidid>https://orcid.org/0000-0002-8044-9304</orcidid><orcidid>https://orcid.org/0000-0002-1950-1986</orcidid><orcidid>https://orcid.org/0000-0002-7222-2417</orcidid></search><sort><creationdate>20200601</creationdate><title>Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques</title><author>Chae, Yoon Seok ; Kim, Ji Hyung ; Quach, Huu Luong ; Moon, Jae Hyung ; Sung, Hae-Jin ; Kim, Changhyun ; Go, Byeong-Soo ; Park, Minwon ; Kim, Yeong-Chun ; Kim, Hyung-Wook ; Jo, Young-Sik ; Kim, Ho Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-710d2266176a1fde19e7d39b858d8e6b367f40fc0a217227feace5236361f5313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coils</topic><topic>Critical current (superconductivity)</topic><topic>Design analysis</topic><topic>Electromagnetic properties</topic><topic>Electromagnetics</topic><topic>Equivalent circuits</topic><topic>Field coils</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>High-temperature superconducting generator</topic><topic>High-temperature superconductors</topic><topic>HTS electric insulation technique</topic><topic>Insulation</topic><topic>Insulators</topic><topic>Integrated circuits</topic><topic>Metal-insulator transition</topic><topic>Numerical analysis</topic><topic>Offshore energy sources</topic><topic>offshore wind power</topic><topic>Stability analysis</topic><topic>stability characteristic</topic><topic>Superconducting magnets</topic><topic>Wind power</topic><topic>Wind turbines</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Yoon Seok</creatorcontrib><creatorcontrib>Kim, Ji Hyung</creatorcontrib><creatorcontrib>Quach, Huu Luong</creatorcontrib><creatorcontrib>Moon, Jae Hyung</creatorcontrib><creatorcontrib>Sung, Hae-Jin</creatorcontrib><creatorcontrib>Kim, Changhyun</creatorcontrib><creatorcontrib>Go, Byeong-Soo</creatorcontrib><creatorcontrib>Park, Minwon</creatorcontrib><creatorcontrib>Kim, Yeong-Chun</creatorcontrib><creatorcontrib>Kim, Hyung-Wook</creatorcontrib><creatorcontrib>Jo, Young-Sik</creatorcontrib><creatorcontrib>Kim, Ho Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chae, Yoon Seok</au><au>Kim, Ji Hyung</au><au>Quach, Huu Luong</au><au>Moon, Jae Hyung</au><au>Sung, Hae-Jin</au><au>Kim, Changhyun</au><au>Go, Byeong-Soo</au><au>Park, Minwon</au><au>Kim, Yeong-Chun</au><au>Kim, Hyung-Wook</au><au>Jo, Young-Sik</au><au>Kim, Ho Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This paper presents the results of an electromagnetic design and numerical analysis conducted on a 10-MW-class second-generation high-temperature superconducting generator (2G HTSG) used in an offshore wind power turbine. To report the operation reliability of 10-MW-class HTSGs employed in offshore environment, various electric insulation techniques (EITs) for HTS field coils (FCs), such as no-insulation, metal insulation, and metal-insulator transition insulation, are considered in this study. Using the time-transient solver of the three-dimensional (3D) electromagnetic finite element analysis (FEA), we investigated the electromagnetic characteristics of the HTSG with the three EITs in terms of the electrical output of the HTSG and the critical current of the FCs. To analyze the charging characteristic of the HTS FCs with the three EITs in steady-state operation as well as the electrical in transient-state operation, electric equivalent circuit models are built with key parameters based on the electromagnetic FEA results. Finally, the performances of the HTS FCs are discussed and evaluated in terms of the electromagnetic response and stability characteristics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2973589</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8498-8981</orcidid><orcidid>https://orcid.org/0000-0001-6752-419X</orcidid><orcidid>https://orcid.org/0000-0001-8497-749X</orcidid><orcidid>https://orcid.org/0000-0002-6374-669X</orcidid><orcidid>https://orcid.org/0000-0003-3050-5029</orcidid><orcidid>https://orcid.org/0000-0002-8044-9304</orcidid><orcidid>https://orcid.org/0000-0002-1950-1986</orcidid><orcidid>https://orcid.org/0000-0002-7222-2417</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-7
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2374685657
source IEEE Electronic Library (IEL)
subjects Coils
Critical current (superconductivity)
Design analysis
Electromagnetic properties
Electromagnetics
Equivalent circuits
Field coils
Finite element method
High temperature
High-temperature superconducting generator
High-temperature superconductors
HTS electric insulation technique
Insulation
Insulators
Integrated circuits
Metal-insulator transition
Numerical analysis
Offshore energy sources
offshore wind power
Stability analysis
stability characteristic
Superconducting magnets
Wind power
Wind turbines
Wires
title Design and Analysis of HTS Rotor-Field Coils of a 10-MW-Class HTS Generator Considering Various Electric Insulation Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20HTS%20Rotor-Field%20Coils%20of%20a%2010-MW-Class%20HTS%20Generator%20Considering%20Various%20Electric%20Insulation%20Techniques&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Chae,%20Yoon%20Seok&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2973589&rft_dat=%3Cproquest_RIE%3E2374685657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374685657&rft_id=info:pmid/&rft_ieee_id=8998346&rfr_iscdi=true