Low Energy Band Structure and Symmetries of UTe2 from Angle-Resolved Photoemission Spectroscopy
The compound UTe2 has recently been shown to realize spin triplet superconductivity from a nonmagnetic normal state. This has sparked intense research activity, including theoretical analyses that suggest the superconducting order parameter to be topologically nontrivial. However, the underlying ele...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-02, Vol.124 (7), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The compound UTe2 has recently been shown to realize spin triplet superconductivity from a nonmagnetic normal state. This has sparked intense research activity, including theoretical analyses that suggest the superconducting order parameter to be topologically nontrivial. However, the underlying electronic band structure is a critical factor for these analyses, and remains poorly understood. Here, we present high resolution angle-resolved photoemission measurements covering multiple planes in the 3D Brillouin zone of UTe2, revealing distinct Fermi-level features from two orthogonal quasi-one-dimensional light electron bands and one heavy band. The electronic symmetries are evaluated in comparison with numerical simulations, and the resulting picture is discussed as a platform for unconventional many-body order. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.076401 |