Universal threshold for primordial black hole formation

In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-02, Vol.101 (4), p.1, Article 044022
Hauptverfasser: Escrivà, Albert, Germani, Cristiano, Sheth, Ravi K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Physical review. D
container_volume 101
creator Escrivà, Albert
Germani, Cristiano
Sheth, Ravi K.
description In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.
doi_str_mv 10.1103/PhysRevD.101.044022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2374196859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374196859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8FnzvvTdLEPMr8CwNF3HNI24R2ds1MusG-vSlVn-7hnsO9hx8h1whLRGC3780pftjjwxIBl8A5UHpGZpRLyAGoOv_XCJdkEeMWkhSgJOKMyE3fHm2IpsuGJtjY-K7OnA_ZPrQ7H-o2GWVnqq8sOXZ0dmZofX9FLpzpol38zjnZPD1-rl7y9dvz6-p-nVe0oEPupCorbiqORtVY0xKoKaxBkSqVFqxExkFywQELI5hwEh1nFIUULAU4m5Ob6e4--O-DjYPe-kPo00tNmeSoxF2hUopNqSr4GIN1eqxvwkkj6BGS_oOUFqgnSOwH1sdacA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374196859</pqid></control><display><type>article</type><title>Universal threshold for primordial black hole formation</title><source>American Physical Society Journals</source><creator>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</creator><creatorcontrib>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</creatorcontrib><description>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.044022</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Amplitudes ; Black holes ; Computer simulation ; Curvature ; Perturbation</subject><ispartof>Physical review. D, 2020-02, Vol.101 (4), p.1, Article 044022</ispartof><rights>Copyright American Physical Society Feb 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</citedby><cites>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</cites><orcidid>0000-0002-2330-0917 ; 0000-0001-5483-8034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Escrivà, Albert</creatorcontrib><creatorcontrib>Germani, Cristiano</creatorcontrib><creatorcontrib>Sheth, Ravi K.</creatorcontrib><title>Universal threshold for primordial black hole formation</title><title>Physical review. D</title><description>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</description><subject>Amplitudes</subject><subject>Black holes</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Perturbation</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8FnzvvTdLEPMr8CwNF3HNI24R2ds1MusG-vSlVn-7hnsO9hx8h1whLRGC3780pftjjwxIBl8A5UHpGZpRLyAGoOv_XCJdkEeMWkhSgJOKMyE3fHm2IpsuGJtjY-K7OnA_ZPrQ7H-o2GWVnqq8sOXZ0dmZofX9FLpzpol38zjnZPD1-rl7y9dvz6-p-nVe0oEPupCorbiqORtVY0xKoKaxBkSqVFqxExkFywQELI5hwEh1nFIUULAU4m5Ob6e4--O-DjYPe-kPo00tNmeSoxF2hUopNqSr4GIN1eqxvwkkj6BGS_oOUFqgnSOwH1sdacA</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Escrivà, Albert</creator><creator>Germani, Cristiano</creator><creator>Sheth, Ravi K.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2330-0917</orcidid><orcidid>https://orcid.org/0000-0001-5483-8034</orcidid></search><sort><creationdate>20200215</creationdate><title>Universal threshold for primordial black hole formation</title><author>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Black holes</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escrivà, Albert</creatorcontrib><creatorcontrib>Germani, Cristiano</creatorcontrib><creatorcontrib>Sheth, Ravi K.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escrivà, Albert</au><au>Germani, Cristiano</au><au>Sheth, Ravi K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal threshold for primordial black hole formation</atitle><jtitle>Physical review. D</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>101</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>044022</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.044022</doi><orcidid>https://orcid.org/0000-0002-2330-0917</orcidid><orcidid>https://orcid.org/0000-0001-5483-8034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-02, Vol.101 (4), p.1, Article 044022
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2374196859
source American Physical Society Journals
subjects Amplitudes
Black holes
Computer simulation
Curvature
Perturbation
title Universal threshold for primordial black hole formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20threshold%20for%20primordial%20black%20hole%20formation&rft.jtitle=Physical%20review.%20D&rft.au=Escriv%C3%A0,%20Albert&rft.date=2020-02-15&rft.volume=101&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=044022&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.044022&rft_dat=%3Cproquest_cross%3E2374196859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374196859&rft_id=info:pmid/&rfr_iscdi=true