Universal threshold for primordial black hole formation
In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scal...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-02, Vol.101 (4), p.1, Article 044022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 101 |
creator | Escrivà, Albert Germani, Cristiano Sheth, Ravi K. |
description | In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm. |
doi_str_mv | 10.1103/PhysRevD.101.044022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2374196859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374196859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8FnzvvTdLEPMr8CwNF3HNI24R2ds1MusG-vSlVn-7hnsO9hx8h1whLRGC3780pftjjwxIBl8A5UHpGZpRLyAGoOv_XCJdkEeMWkhSgJOKMyE3fHm2IpsuGJtjY-K7OnA_ZPrQ7H-o2GWVnqq8sOXZ0dmZofX9FLpzpol38zjnZPD1-rl7y9dvz6-p-nVe0oEPupCorbiqORtVY0xKoKaxBkSqVFqxExkFywQELI5hwEh1nFIUULAU4m5Ob6e4--O-DjYPe-kPo00tNmeSoxF2hUopNqSr4GIN1eqxvwkkj6BGS_oOUFqgnSOwH1sdacA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374196859</pqid></control><display><type>article</type><title>Universal threshold for primordial black hole formation</title><source>American Physical Society Journals</source><creator>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</creator><creatorcontrib>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</creatorcontrib><description>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.044022</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Amplitudes ; Black holes ; Computer simulation ; Curvature ; Perturbation</subject><ispartof>Physical review. D, 2020-02, Vol.101 (4), p.1, Article 044022</ispartof><rights>Copyright American Physical Society Feb 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</citedby><cites>FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</cites><orcidid>0000-0002-2330-0917 ; 0000-0001-5483-8034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Escrivà, Albert</creatorcontrib><creatorcontrib>Germani, Cristiano</creatorcontrib><creatorcontrib>Sheth, Ravi K.</creatorcontrib><title>Universal threshold for primordial black hole formation</title><title>Physical review. D</title><description>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</description><subject>Amplitudes</subject><subject>Black holes</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Perturbation</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8FnzvvTdLEPMr8CwNF3HNI24R2ds1MusG-vSlVn-7hnsO9hx8h1whLRGC3780pftjjwxIBl8A5UHpGZpRLyAGoOv_XCJdkEeMWkhSgJOKMyE3fHm2IpsuGJtjY-K7OnA_ZPrQ7H-o2GWVnqq8sOXZ0dmZofX9FLpzpol38zjnZPD1-rl7y9dvz6-p-nVe0oEPupCorbiqORtVY0xKoKaxBkSqVFqxExkFywQELI5hwEh1nFIUULAU4m5Ob6e4--O-DjYPe-kPo00tNmeSoxF2hUopNqSr4GIN1eqxvwkkj6BGS_oOUFqgnSOwH1sdacA</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Escrivà, Albert</creator><creator>Germani, Cristiano</creator><creator>Sheth, Ravi K.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2330-0917</orcidid><orcidid>https://orcid.org/0000-0001-5483-8034</orcidid></search><sort><creationdate>20200215</creationdate><title>Universal threshold for primordial black hole formation</title><author>Escrivà, Albert ; Germani, Cristiano ; Sheth, Ravi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-f79bc4ac41a9d1d2b02a5ea16247be0e713407464015a636f71f432167637be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Black holes</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escrivà, Albert</creatorcontrib><creatorcontrib>Germani, Cristiano</creatorcontrib><creatorcontrib>Sheth, Ravi K.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escrivà, Albert</au><au>Germani, Cristiano</au><au>Sheth, Ravi K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal threshold for primordial black hole formation</atitle><jtitle>Physical review. D</jtitle><date>2020-02-15</date><risdate>2020</risdate><volume>101</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>044022</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>In this paper, we argue and show numerically that the threshold to form primordial black holes from an initial spherically symmetric perturbation is, to an excellent approximation, universal, whenever given in terms of the compaction function averaged over a sphere of radius rm, where rm is the scale on which the compaction function is maximum. This can be understood as the requirement that, for a black hole to form, each shell of the averaged compaction function should have an amplitude exceeding the so-called Harada-Yoo-Kohri limit. For a radiation dominated universe we argued, supported by the numerical simulations, that this limit is δc=0.40, which is slightly below the one quoted in the literature. Additionally, we show that the profile dependence of the threshold for the compaction function is only sensitive to its curvature at the maximum. We use these results to provide an analytic formula for the threshold amplitude of the compaction function at its maximum in terms of the normalized compaction function curvature at rm.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.044022</doi><orcidid>https://orcid.org/0000-0002-2330-0917</orcidid><orcidid>https://orcid.org/0000-0001-5483-8034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-02, Vol.101 (4), p.1, Article 044022 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2374196859 |
source | American Physical Society Journals |
subjects | Amplitudes Black holes Computer simulation Curvature Perturbation |
title | Universal threshold for primordial black hole formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20threshold%20for%20primordial%20black%20hole%20formation&rft.jtitle=Physical%20review.%20D&rft.au=Escriv%C3%A0,%20Albert&rft.date=2020-02-15&rft.volume=101&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=044022&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.044022&rft_dat=%3Cproquest_cross%3E2374196859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374196859&rft_id=info:pmid/&rfr_iscdi=true |