Machine-learning nonstationary noise out of gravitational-wave detectors

Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-02, Vol.101 (4), p.1, Article 042003
Hauptverfasser: Vajente, G., Huang, Y., Isi, M., Driggers, J. C., Kissel, J. S., Szczepańczyk, M. J., Vitale, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1
container_title Physical review. D
container_volume 101
creator Vajente, G.
Huang, Y.
Isi, M.
Driggers, J. C.
Kissel, J. S.
Szczepańczyk, M. J.
Vitale, S.
description Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation.
doi_str_mv 10.1103/PhysRevD.101.042003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2374196107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374196107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-df93fd22f87f61aba397611aa974f6a03e6aaf2dbadf34451ce74b1b394d37053</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEtPYJ-BSiXOHnWTNckTjz5CGQAjOkdsmW6fRjCQr2rdf0QYnP9tP1vOPsWuEMSKI27fVPr7b7n6MgGOQHECcsQGXCnIArs__NcIlG8W4hl4WoBXigM1fqFo1rc03lkLbtMus9W1MlBrfUtj3XRNt5ncp8y5bBuqa026T_1Bns9omWyUf4hW7cLSJdnSqQ_b5-PAxm-eL16fn2d0ir6SYprx2WriaczdVrkAqSWhVIBJpJV1BIGxB5HhdUu2ElBOsrJIllkLLWiiYiCG7Od7dBv-9szGZtd-FPk80XCiJukBQvUscXVXwMQbrzDY0X_1DBsH8UjN_1PoBmiM1cQBEb2KX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374196107</pqid></control><display><type>article</type><title>Machine-learning nonstationary noise out of gravitational-wave detectors</title><source>American Physical Society Journals</source><creator>Vajente, G. ; Huang, Y. ; Isi, M. ; Driggers, J. C. ; Kissel, J. S. ; Szczepańczyk, M. J. ; Vitale, S.</creator><creatorcontrib>Vajente, G. ; Huang, Y. ; Isi, M. ; Driggers, J. C. ; Kissel, J. S. ; Szczepańczyk, M. J. ; Vitale, S.</creatorcontrib><description>Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.042003</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Background noise ; Couplings ; Data transmission ; Detectors ; Gravitation ; Gravitational waves ; Machine learning ; Parameter estimation ; Signal to noise ratio</subject><ispartof>Physical review. D, 2020-02, Vol.101 (4), p.1, Article 042003</ispartof><rights>Copyright American Physical Society Feb 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-df93fd22f87f61aba397611aa974f6a03e6aaf2dbadf34451ce74b1b394d37053</citedby><cites>FETCH-LOGICAL-c438t-df93fd22f87f61aba397611aa974f6a03e6aaf2dbadf34451ce74b1b394d37053</cites><orcidid>0000-0002-6167-6149 ; 0000-0002-1702-9577 ; 0000-0002-7656-6882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Vajente, G.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Isi, M.</creatorcontrib><creatorcontrib>Driggers, J. C.</creatorcontrib><creatorcontrib>Kissel, J. S.</creatorcontrib><creatorcontrib>Szczepańczyk, M. J.</creatorcontrib><creatorcontrib>Vitale, S.</creatorcontrib><title>Machine-learning nonstationary noise out of gravitational-wave detectors</title><title>Physical review. D</title><description>Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Couplings</subject><subject>Data transmission</subject><subject>Detectors</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Machine learning</subject><subject>Parameter estimation</subject><subject>Signal to noise ratio</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwzAMxSMEEtPYJ-BSiXOHnWTNckTjz5CGQAjOkdsmW6fRjCQr2rdf0QYnP9tP1vOPsWuEMSKI27fVPr7b7n6MgGOQHECcsQGXCnIArs__NcIlG8W4hl4WoBXigM1fqFo1rc03lkLbtMus9W1MlBrfUtj3XRNt5ncp8y5bBuqa026T_1Bns9omWyUf4hW7cLSJdnSqQ_b5-PAxm-eL16fn2d0ir6SYprx2WriaczdVrkAqSWhVIBJpJV1BIGxB5HhdUu2ElBOsrJIllkLLWiiYiCG7Od7dBv-9szGZtd-FPk80XCiJukBQvUscXVXwMQbrzDY0X_1DBsH8UjN_1PoBmiM1cQBEb2KX</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Vajente, G.</creator><creator>Huang, Y.</creator><creator>Isi, M.</creator><creator>Driggers, J. C.</creator><creator>Kissel, J. S.</creator><creator>Szczepańczyk, M. J.</creator><creator>Vitale, S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6167-6149</orcidid><orcidid>https://orcid.org/0000-0002-1702-9577</orcidid><orcidid>https://orcid.org/0000-0002-7656-6882</orcidid></search><sort><creationdate>20200218</creationdate><title>Machine-learning nonstationary noise out of gravitational-wave detectors</title><author>Vajente, G. ; Huang, Y. ; Isi, M. ; Driggers, J. C. ; Kissel, J. S. ; Szczepańczyk, M. J. ; Vitale, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-df93fd22f87f61aba397611aa974f6a03e6aaf2dbadf34451ce74b1b394d37053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Couplings</topic><topic>Data transmission</topic><topic>Detectors</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Machine learning</topic><topic>Parameter estimation</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vajente, G.</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Isi, M.</creatorcontrib><creatorcontrib>Driggers, J. C.</creatorcontrib><creatorcontrib>Kissel, J. S.</creatorcontrib><creatorcontrib>Szczepańczyk, M. J.</creatorcontrib><creatorcontrib>Vitale, S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vajente, G.</au><au>Huang, Y.</au><au>Isi, M.</au><au>Driggers, J. C.</au><au>Kissel, J. S.</au><au>Szczepańczyk, M. J.</au><au>Vitale, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning nonstationary noise out of gravitational-wave detectors</atitle><jtitle>Physical review. D</jtitle><date>2020-02-18</date><risdate>2020</risdate><volume>101</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>042003</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Signal extraction out of background noise is a common challenge in high-precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal-to-noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is nonstationary, linear techniques often fail or are suboptimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove nonstationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the detector gravitational-wave reach without introducing any bias on the source parameter estimation.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.101.042003</doi><orcidid>https://orcid.org/0000-0002-6167-6149</orcidid><orcidid>https://orcid.org/0000-0002-1702-9577</orcidid><orcidid>https://orcid.org/0000-0002-7656-6882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-02, Vol.101 (4), p.1, Article 042003
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2374196107
source American Physical Society Journals
subjects Algorithms
Background noise
Couplings
Data transmission
Detectors
Gravitation
Gravitational waves
Machine learning
Parameter estimation
Signal to noise ratio
title Machine-learning nonstationary noise out of gravitational-wave detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20nonstationary%20noise%20out%20of%20gravitational-wave%20detectors&rft.jtitle=Physical%20review.%20D&rft.au=Vajente,%20G.&rft.date=2020-02-18&rft.volume=101&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=042003&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.042003&rft_dat=%3Cproquest_cross%3E2374196107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374196107&rft_id=info:pmid/&rfr_iscdi=true