Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback

Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2020-04, Vol.30 (6), p.2152-2170
Hauptverfasser: Feng, Jiehua, Zhao, Dongya, Yan, Xing‐Gang, Spurgeon, Sarah K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2170
container_issue 6
container_start_page 2152
container_title International journal of robust and nonlinear control
container_volume 30
creator Feng, Jiehua
Zhao, Dongya
Yan, Xing‐Gang
Spurgeon, Sarah K.
description Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1002/rnc.4869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2373970582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373970582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszSb7kRylfkJRED2H2eyspN0mNdki6683bb16msA8mRleQi5zNssZ4zfBmVkhK3VEJjlTKsu5UMe7d6Eyqbg4JWcxLhlLPV5MyOoODbohQG9_sKWxt611n3TtW6TGp4bvaecDBWp6iJH6jjrveusQArVuwJCUQzPsPo9xwHWkzUjjAIM1-4K0Q2wbMKtzctJBH_Hir07Jx8P9-_wpW7w-Ps9vF5kRVbqyM4LVgkGOTdkWDKQsFfIKy5oXHJgEhEbWssoVMGhEpXhVFdgVLTPJoxRTcnWYuwn-a4tx0Eu_DS6t1FzUQtWslDyp64MywccYsNObYNcQRp0zvYtSpyj1LspEswP9tj2O_zr99jLf-19hGnY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373970582</pqid></control><display><type>article</type><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</creator><creatorcontrib>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</creatorcontrib><description>Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4869</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Coordinate transformations ; decentralized control ; Dynamic stability ; Feedback linearization ; Interconnections ; nonlinear interconnected systems ; Nonlinear systems ; Robust control ; Sliding mode control ; Stability analysis ; State feedback ; State variable ; static state feedback ; Uncertainty</subject><ispartof>International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2152-2170</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</citedby><cites>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</cites><orcidid>0000-0003-3451-0650 ; 0000-0001-8685-3992 ; 0000-0003-2217-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Feng, Jiehua</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xing‐Gang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><title>International journal of robust and nonlinear control</title><description>Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</description><subject>Coordinate transformations</subject><subject>decentralized control</subject><subject>Dynamic stability</subject><subject>Feedback linearization</subject><subject>Interconnections</subject><subject>nonlinear interconnected systems</subject><subject>Nonlinear systems</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>State variable</subject><subject>static state feedback</subject><subject>Uncertainty</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszSb7kRylfkJRED2H2eyspN0mNdki6683bb16msA8mRleQi5zNssZ4zfBmVkhK3VEJjlTKsu5UMe7d6Eyqbg4JWcxLhlLPV5MyOoODbohQG9_sKWxt611n3TtW6TGp4bvaecDBWp6iJH6jjrveusQArVuwJCUQzPsPo9xwHWkzUjjAIM1-4K0Q2wbMKtzctJBH_Hir07Jx8P9-_wpW7w-Ps9vF5kRVbqyM4LVgkGOTdkWDKQsFfIKy5oXHJgEhEbWssoVMGhEpXhVFdgVLTPJoxRTcnWYuwn-a4tx0Eu_DS6t1FzUQtWslDyp64MywccYsNObYNcQRp0zvYtSpyj1LspEswP9tj2O_zr99jLf-19hGnY4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Feng, Jiehua</creator><creator>Zhao, Dongya</creator><creator>Yan, Xing‐Gang</creator><creator>Spurgeon, Sarah K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><orcidid>https://orcid.org/0000-0001-8685-3992</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid></search><sort><creationdate>20200401</creationdate><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><author>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coordinate transformations</topic><topic>decentralized control</topic><topic>Dynamic stability</topic><topic>Feedback linearization</topic><topic>Interconnections</topic><topic>nonlinear interconnected systems</topic><topic>Nonlinear systems</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>State variable</topic><topic>static state feedback</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jiehua</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xing‐Gang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jiehua</au><au>Zhao, Dongya</au><au>Yan, Xing‐Gang</au><au>Spurgeon, Sarah K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2152</spage><epage>2170</epage><pages>2152-2170</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4869</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><orcidid>https://orcid.org/0000-0001-8685-3992</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2152-2170
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2373970582
source Wiley Online Library Journals Frontfile Complete
subjects Coordinate transformations
decentralized control
Dynamic stability
Feedback linearization
Interconnections
nonlinear interconnected systems
Nonlinear systems
Robust control
Sliding mode control
Stability analysis
State feedback
State variable
static state feedback
Uncertainty
title Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20sliding%20mode%20control%20for%20a%20class%20of%20nonlinear%20interconnected%20systems%20by%20static%20state%20feedback&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Feng,%20Jiehua&rft.date=2020-04-01&rft.volume=30&rft.issue=6&rft.spage=2152&rft.epage=2170&rft.pages=2152-2170&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4869&rft_dat=%3Cproquest_cross%3E2373970582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373970582&rft_id=info:pmid/&rfr_iscdi=true