Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback
Summary In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected s...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2020-04, Vol.30 (6), p.2152-2170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2170 |
---|---|
container_issue | 6 |
container_start_page | 2152 |
container_title | International journal of robust and nonlinear control |
container_volume | 30 |
creator | Feng, Jiehua Zhao, Dongya Yan, Xing‐Gang Spurgeon, Sarah K. |
description | Summary
In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1002/rnc.4869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2373970582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373970582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszSb7kRylfkJRED2H2eyspN0mNdki6683bb16msA8mRleQi5zNssZ4zfBmVkhK3VEJjlTKsu5UMe7d6Eyqbg4JWcxLhlLPV5MyOoODbohQG9_sKWxt611n3TtW6TGp4bvaecDBWp6iJH6jjrveusQArVuwJCUQzPsPo9xwHWkzUjjAIM1-4K0Q2wbMKtzctJBH_Hir07Jx8P9-_wpW7w-Ps9vF5kRVbqyM4LVgkGOTdkWDKQsFfIKy5oXHJgEhEbWssoVMGhEpXhVFdgVLTPJoxRTcnWYuwn-a4tx0Eu_DS6t1FzUQtWslDyp64MywccYsNObYNcQRp0zvYtSpyj1LspEswP9tj2O_zr99jLf-19hGnY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373970582</pqid></control><display><type>article</type><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</creator><creatorcontrib>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</creatorcontrib><description>Summary
In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4869</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Coordinate transformations ; decentralized control ; Dynamic stability ; Feedback linearization ; Interconnections ; nonlinear interconnected systems ; Nonlinear systems ; Robust control ; Sliding mode control ; Stability analysis ; State feedback ; State variable ; static state feedback ; Uncertainty</subject><ispartof>International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2152-2170</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</citedby><cites>FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</cites><orcidid>0000-0003-3451-0650 ; 0000-0001-8685-3992 ; 0000-0003-2217-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Feng, Jiehua</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xing‐Gang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><title>International journal of robust and nonlinear control</title><description>Summary
In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</description><subject>Coordinate transformations</subject><subject>decentralized control</subject><subject>Dynamic stability</subject><subject>Feedback linearization</subject><subject>Interconnections</subject><subject>nonlinear interconnected systems</subject><subject>Nonlinear systems</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>State variable</subject><subject>static state feedback</subject><subject>Uncertainty</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMCXrxszSb7kRylfkJRED2H2eyspN0mNdki6683bb16msA8mRleQi5zNssZ4zfBmVkhK3VEJjlTKsu5UMe7d6Eyqbg4JWcxLhlLPV5MyOoODbohQG9_sKWxt611n3TtW6TGp4bvaecDBWp6iJH6jjrveusQArVuwJCUQzPsPo9xwHWkzUjjAIM1-4K0Q2wbMKtzctJBH_Hir07Jx8P9-_wpW7w-Ps9vF5kRVbqyM4LVgkGOTdkWDKQsFfIKy5oXHJgEhEbWssoVMGhEpXhVFdgVLTPJoxRTcnWYuwn-a4tx0Eu_DS6t1FzUQtWslDyp64MywccYsNObYNcQRp0zvYtSpyj1LspEswP9tj2O_zr99jLf-19hGnY4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Feng, Jiehua</creator><creator>Zhao, Dongya</creator><creator>Yan, Xing‐Gang</creator><creator>Spurgeon, Sarah K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><orcidid>https://orcid.org/0000-0001-8685-3992</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid></search><sort><creationdate>20200401</creationdate><title>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</title><author>Feng, Jiehua ; Zhao, Dongya ; Yan, Xing‐Gang ; Spurgeon, Sarah K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3649-fc30730a1eb5d40a8859e26e57242a08aeab878619a0ab3692664ef4d0c5d4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coordinate transformations</topic><topic>decentralized control</topic><topic>Dynamic stability</topic><topic>Feedback linearization</topic><topic>Interconnections</topic><topic>nonlinear interconnected systems</topic><topic>Nonlinear systems</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>State variable</topic><topic>static state feedback</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jiehua</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xing‐Gang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jiehua</au><au>Zhao, Dongya</au><au>Yan, Xing‐Gang</au><au>Spurgeon, Sarah K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2152</spage><epage>2170</epage><pages>2152-2170</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
In this paper, a class of interconnected systems is considered, where the nominal isolated systems are fully nonlinear. A robust decentralized sliding mode control based on static state feedback is developed. By local coordinate transformation and feedback linearization, the interconnected system is transformed to a new regular form. A composite sliding surface which is a function of the system state variables is proposed and the stability of the corresponding sliding mode dynamics is analyzed. A new reachability condition is proposed and a robust decentralized sliding mode control is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. Both uncertainties and interconnections are allowed to be unmatched and are assumed to be bounded by nonlinear functions. The bounds on the uncertainties and interconnections have more general forms when compared with existing work. A MATLAB simulation example is used to demonstrate the effectiveness of the proposed method.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4869</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><orcidid>https://orcid.org/0000-0001-8685-3992</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2152-2170 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2373970582 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Coordinate transformations decentralized control Dynamic stability Feedback linearization Interconnections nonlinear interconnected systems Nonlinear systems Robust control Sliding mode control Stability analysis State feedback State variable static state feedback Uncertainty |
title | Decentralized sliding mode control for a class of nonlinear interconnected systems by static state feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20sliding%20mode%20control%20for%20a%20class%20of%20nonlinear%20interconnected%20systems%20by%20static%20state%20feedback&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Feng,%20Jiehua&rft.date=2020-04-01&rft.volume=30&rft.issue=6&rft.spage=2152&rft.epage=2170&rft.pages=2152-2170&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4869&rft_dat=%3Cproquest_cross%3E2373970582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373970582&rft_id=info:pmid/&rfr_iscdi=true |