Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method

Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2020-04, Vol.30 (6), p.2171-2185
Hauptverfasser: Wei, Hongzhi, Wu, Baowei, Tu, Zhengwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2185
container_issue 6
container_start_page 2171
container_title International journal of robust and nonlinear control
container_volume 30
creator Wei, Hongzhi
Wu, Baowei
Tu, Zhengwen
description Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.
doi_str_mv 10.1002/rnc.4871
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2373970435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373970435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</originalsourceid><addsrcrecordid>eNp1kEFOwzAURCMEEqUgcQRLbNgE7NhtbHYoKgWpAgnBOnKdnyYltVM7oS0rjtAzchKchi2r7z_zbGsmCC4JviEYR7dWqxvGY3IUDAgWIiQRFcfdmYmQi4ieBmfOLTH2XsQGwX6yrY0G3ZSyQm6nVWGNLr9kUxqNpM6Qa2QDCFxTrnrR5KjUYA8X1q03rfbyz_f-U1YtZCgxBXTr1Brn5mAXSENrPayh2Rj74e7QDLalMgsr66JU3jE2A4tW0BQmOw9Oclk5uPibw-D9YfKWPIazl-lTcj8LFaWYhGTOx5zGIhNCUQbjDDOi5hIixiJMMc-BkpwTlUvO4xGXmRh5meVSjCPMhaDD4Kp_t7Zm3fp86dK0Vvsv04jGVMSY0ZGnrntKdWks5GltfRF2lxKcdn2nvu-069ujYY9uygp2_3Lp63Ny4H8B_b6GkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373970435</pqid></control><display><type>article</type><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creator><creatorcontrib>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creatorcontrib><description>Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4871</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; inertial terms ; lexicographical order ; Neural networks ; Quaternions ; quaternion‐valued ; Robustness (mathematics) ; State estimation ; Synchronism ; synchronization</subject><ispartof>International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2171-2185</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</citedby><cites>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</cites><orcidid>0000-0003-0267-0633 ; 0000-0002-4673-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><title>International journal of robust and nonlinear control</title><description>Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</description><subject>Algorithms</subject><subject>inertial terms</subject><subject>lexicographical order</subject><subject>Neural networks</subject><subject>Quaternions</subject><subject>quaternion‐valued</subject><subject>Robustness (mathematics)</subject><subject>State estimation</subject><subject>Synchronism</subject><subject>synchronization</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAURCMEEqUgcQRLbNgE7NhtbHYoKgWpAgnBOnKdnyYltVM7oS0rjtAzchKchi2r7z_zbGsmCC4JviEYR7dWqxvGY3IUDAgWIiQRFcfdmYmQi4ieBmfOLTH2XsQGwX6yrY0G3ZSyQm6nVWGNLr9kUxqNpM6Qa2QDCFxTrnrR5KjUYA8X1q03rfbyz_f-U1YtZCgxBXTr1Brn5mAXSENrPayh2Rj74e7QDLalMgsr66JU3jE2A4tW0BQmOw9Oclk5uPibw-D9YfKWPIazl-lTcj8LFaWYhGTOx5zGIhNCUQbjDDOi5hIixiJMMc-BkpwTlUvO4xGXmRh5meVSjCPMhaDD4Kp_t7Zm3fp86dK0Vvsv04jGVMSY0ZGnrntKdWks5GltfRF2lxKcdn2nvu-069ujYY9uygp2_3Lp63Ny4H8B_b6GkQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wei, Hongzhi</creator><creator>Wu, Baowei</creator><creator>Tu, Zhengwen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0267-0633</orcidid><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></search><sort><creationdate>20200401</creationdate><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><author>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>inertial terms</topic><topic>lexicographical order</topic><topic>Neural networks</topic><topic>Quaternions</topic><topic>quaternion‐valued</topic><topic>Robustness (mathematics)</topic><topic>State estimation</topic><topic>Synchronism</topic><topic>synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hongzhi</au><au>Wu, Baowei</au><au>Tu, Zhengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2171</spage><epage>2185</epage><pages>2171-2185</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4871</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0267-0633</orcidid><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2171-2185
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2373970435
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
inertial terms
lexicographical order
Neural networks
Quaternions
quaternion‐valued
Robustness (mathematics)
State estimation
Synchronism
synchronization
title Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20synchronization%20and%20state%20estimation%20of%20inertial%20quaternion%E2%80%90valued%20Cohen%E2%80%90Grossberg%20neural%20networks:%20Lexicographical%20order%20method&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wei,%20Hongzhi&rft.date=2020-04-01&rft.volume=30&rft.issue=6&rft.spage=2171&rft.epage=2185&rft.pages=2171-2185&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4871&rft_dat=%3Cproquest_cross%3E2373970435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373970435&rft_id=info:pmid/&rfr_iscdi=true