Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method
Summary This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2020-04, Vol.30 (6), p.2171-2185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2185 |
---|---|
container_issue | 6 |
container_start_page | 2171 |
container_title | International journal of robust and nonlinear control |
container_volume | 30 |
creator | Wei, Hongzhi Wu, Baowei Tu, Zhengwen |
description | Summary
This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results. |
doi_str_mv | 10.1002/rnc.4871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2373970435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2373970435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</originalsourceid><addsrcrecordid>eNp1kEFOwzAURCMEEqUgcQRLbNgE7NhtbHYoKgWpAgnBOnKdnyYltVM7oS0rjtAzchKchi2r7z_zbGsmCC4JviEYR7dWqxvGY3IUDAgWIiQRFcfdmYmQi4ieBmfOLTH2XsQGwX6yrY0G3ZSyQm6nVWGNLr9kUxqNpM6Qa2QDCFxTrnrR5KjUYA8X1q03rfbyz_f-U1YtZCgxBXTr1Brn5mAXSENrPayh2Rj74e7QDLalMgsr66JU3jE2A4tW0BQmOw9Oclk5uPibw-D9YfKWPIazl-lTcj8LFaWYhGTOx5zGIhNCUQbjDDOi5hIixiJMMc-BkpwTlUvO4xGXmRh5meVSjCPMhaDD4Kp_t7Zm3fp86dK0Vvsv04jGVMSY0ZGnrntKdWks5GltfRF2lxKcdn2nvu-069ujYY9uygp2_3Lp63Ny4H8B_b6GkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373970435</pqid></control><display><type>article</type><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creator><creatorcontrib>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</creatorcontrib><description>Summary
This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4871</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; inertial terms ; lexicographical order ; Neural networks ; Quaternions ; quaternion‐valued ; Robustness (mathematics) ; State estimation ; Synchronism ; synchronization</subject><ispartof>International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2171-2185</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</citedby><cites>FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</cites><orcidid>0000-0003-0267-0633 ; 0000-0002-4673-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.4871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.4871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><title>International journal of robust and nonlinear control</title><description>Summary
This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</description><subject>Algorithms</subject><subject>inertial terms</subject><subject>lexicographical order</subject><subject>Neural networks</subject><subject>Quaternions</subject><subject>quaternion‐valued</subject><subject>Robustness (mathematics)</subject><subject>State estimation</subject><subject>Synchronism</subject><subject>synchronization</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAURCMEEqUgcQRLbNgE7NhtbHYoKgWpAgnBOnKdnyYltVM7oS0rjtAzchKchi2r7z_zbGsmCC4JviEYR7dWqxvGY3IUDAgWIiQRFcfdmYmQi4ieBmfOLTH2XsQGwX6yrY0G3ZSyQm6nVWGNLr9kUxqNpM6Qa2QDCFxTrnrR5KjUYA8X1q03rfbyz_f-U1YtZCgxBXTr1Brn5mAXSENrPayh2Rj74e7QDLalMgsr66JU3jE2A4tW0BQmOw9Oclk5uPibw-D9YfKWPIazl-lTcj8LFaWYhGTOx5zGIhNCUQbjDDOi5hIixiJMMc-BkpwTlUvO4xGXmRh5meVSjCPMhaDD4Kp_t7Zm3fp86dK0Vvsv04jGVMSY0ZGnrntKdWks5GltfRF2lxKcdn2nvu-069ujYY9uygp2_3Lp63Ny4H8B_b6GkQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wei, Hongzhi</creator><creator>Wu, Baowei</creator><creator>Tu, Zhengwen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0267-0633</orcidid><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></search><sort><creationdate>20200401</creationdate><title>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</title><author>Wei, Hongzhi ; Wu, Baowei ; Tu, Zhengwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-1b868379d99c34e6d041cbae24420308fe31f81cfa88758ad950304fa96208993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>inertial terms</topic><topic>lexicographical order</topic><topic>Neural networks</topic><topic>Quaternions</topic><topic>quaternion‐valued</topic><topic>Robustness (mathematics)</topic><topic>State estimation</topic><topic>Synchronism</topic><topic>synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hongzhi</creatorcontrib><creatorcontrib>Wu, Baowei</creatorcontrib><creatorcontrib>Tu, Zhengwen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hongzhi</au><au>Wu, Baowei</au><au>Tu, Zhengwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2171</spage><epage>2185</epage><pages>2171-2185</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper addresses the problems of synchronization and state estimation for a class of inertial quaternion‐valued Cohen‐Grossberg neural networks. By means of proper control strategy, sufficient conditions are derived for ascertaining exponential synchronization of quaternion‐valued Cohen‐Grossberg neural networks. Subsequently, the state estimation problem has also been augmented to achieve robust stable performance of the estimation error system. What should be mentioned is that, the system states considered in this paper are taking values in an interval, which implies that the states are varying between two different quaternions, thus, an optimal algorithm (lexicographical order method) is employed, which can be used to determine the “magnitude" of two different quaternions. In this case, the interval proposed by the quaternion‐valued is meaningful. Finally, numerical examples are provided to demonstrate the effectiveness of the derived theoretical results.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4871</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0267-0633</orcidid><orcidid>https://orcid.org/0000-0002-4673-9834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2020-04, Vol.30 (6), p.2171-2185 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2373970435 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms inertial terms lexicographical order Neural networks Quaternions quaternion‐valued Robustness (mathematics) State estimation Synchronism synchronization |
title | Exponential synchronization and state estimation of inertial quaternion‐valued Cohen‐Grossberg neural networks: Lexicographical order method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20synchronization%20and%20state%20estimation%20of%20inertial%20quaternion%E2%80%90valued%20Cohen%E2%80%90Grossberg%20neural%20networks:%20Lexicographical%20order%20method&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Wei,%20Hongzhi&rft.date=2020-04-01&rft.volume=30&rft.issue=6&rft.spage=2171&rft.epage=2185&rft.pages=2171-2185&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4871&rft_dat=%3Cproquest_cross%3E2373970435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373970435&rft_id=info:pmid/&rfr_iscdi=true |