A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions
Purpose This study aimed to identify the most appropriate volume of interest (VOI) setting in prognostic prediction using pretreatment magnetic resonance imaging (MRI) radiomic analysis for cervical cancer (CC) treated with definitive radiotherapy. Materials and methods The study participants were 8...
Gespeichert in:
Veröffentlicht in: | Japanese journal of radiology 2020-03, Vol.38 (3), p.265-273 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 3 |
container_start_page | 265 |
container_title | Japanese journal of radiology |
container_volume | 38 |
creator | Takada, Akiyo Yokota, Hajime Watanabe Nemoto, Miho Horikoshi, Takuro Matsushima, Jun Uno, Takashi |
description | Purpose
This study aimed to identify the most appropriate volume of interest (VOI) setting in prognostic prediction using pretreatment magnetic resonance imaging (MRI) radiomic analysis for cervical cancer (CC) treated with definitive radiotherapy.
Materials and methods
The study participants were 87 patients who had undergone pretreatment MRI and definitive radiotherapy for CC. VOI
tumor
was created with tumor alone and VOI
+4 mm
–VOI
+20 mm
mechanically expanded by 4–20 mm around each VOI
tumor
in axial T2-weighted images (T2WI) and an apparent diffusion coefficient (ADC) map. A model was constructed to predict recurrence within the irradiation field within 2 years after treatment using imaging features from the VOI of each sequence. Sorting ability was evaluated by area under the receiver operator characteristic curve (AUC-ROC) analysis.
Results
VOI expansion improved AUC-ROCs compared with the predictive models of VOI
tumor
(0.59 and 0.67 in T2WI and ADC, respectively). The AUC-ROCs of the models with imaging features from expanded VOI
+4 mm
in T2WI and VOI
+4 mm
and VOI
+8 mm
in ADC were 0.82, 0.82, and 0.86, respectively.
Conclusion
Recurrence could be predicted with high accuracy using expanded VOI for CC treated with definitive radiotherapy, suggesting that including the pathological characteristics of invasive margins in radiomics may improve predictive ability. |
doi_str_mv | 10.1007/s11604-019-00917-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2373446645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334251870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8e6de93f746c3fa753e8fef5931fa35c209ae313c1e041b97fb94488853b91f3</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhidGY2v1BVwYEjduRuHCwIy7pqnapMbEdOGOMHC4l4aBEZgm9wV9LplOrYkLVxD4_u-c5G-a1wS_JxiLD5kQjlmLydBiPBDR4ifNKem5aAnufzx9vAty0rzI-RZjzihjz5sTSgYsBOGnza9zNC2-uDZrFQIklMtijiha9PX7FUrKuDg5nZELaCmQXACkId05rTyqiXr_iOYExuniYlhzLrTWgTeoLFNMSMdQUvRI2RpHBqwLrrg72NzlAEnNRzSqDAZVgUKT0od1jAeVggt7NEE5RFO92i9mfZjrHvfyukOCfZ2bXzbPrPIZXj2cZ83Np8ubiy_t9bfPVxfn161mvCttD9zAQK1gXFOrREeht2C7gRKraKd3eFBACdUEMCPjIOw4MNb3fUfHgVh61rzbtHOKPxfIRU4ua_BeBYhLljtK2a4jvcAVffsPehuXFOpylRK1Bs5ZV6ndRukUc05g5ZzcpNJREizXkuVWsqwly_uS5ap-86BexgnMY-RPqxWgG5DrV9hD-jv7P9rfnLi2gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373446645</pqid></control><display><type>article</type><title>A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions</title><source>SpringerLink Journals</source><creator>Takada, Akiyo ; Yokota, Hajime ; Watanabe Nemoto, Miho ; Horikoshi, Takuro ; Matsushima, Jun ; Uno, Takashi</creator><creatorcontrib>Takada, Akiyo ; Yokota, Hajime ; Watanabe Nemoto, Miho ; Horikoshi, Takuro ; Matsushima, Jun ; Uno, Takashi</creatorcontrib><description>Purpose
This study aimed to identify the most appropriate volume of interest (VOI) setting in prognostic prediction using pretreatment magnetic resonance imaging (MRI) radiomic analysis for cervical cancer (CC) treated with definitive radiotherapy.
Materials and methods
The study participants were 87 patients who had undergone pretreatment MRI and definitive radiotherapy for CC. VOI
tumor
was created with tumor alone and VOI
+4 mm
–VOI
+20 mm
mechanically expanded by 4–20 mm around each VOI
tumor
in axial T2-weighted images (T2WI) and an apparent diffusion coefficient (ADC) map. A model was constructed to predict recurrence within the irradiation field within 2 years after treatment using imaging features from the VOI of each sequence. Sorting ability was evaluated by area under the receiver operator characteristic curve (AUC-ROC) analysis.
Results
VOI expansion improved AUC-ROCs compared with the predictive models of VOI
tumor
(0.59 and 0.67 in T2WI and ADC, respectively). The AUC-ROCs of the models with imaging features from expanded VOI
+4 mm
in T2WI and VOI
+4 mm
and VOI
+8 mm
in ADC were 0.82, 0.82, and 0.86, respectively.
Conclusion
Recurrence could be predicted with high accuracy using expanded VOI for CC treated with definitive radiotherapy, suggesting that including the pathological characteristics of invasive margins in radiomics may improve predictive ability.</description><identifier>ISSN: 1867-1071</identifier><identifier>EISSN: 1867-108X</identifier><identifier>DOI: 10.1007/s11604-019-00917-0</identifier><identifier>PMID: 31907716</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Cancer ; Cervical cancer ; Cervix ; Diffusion coefficient ; Imaging ; Invasiveness ; Irradiation ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Medical prognosis ; Medicine ; Medicine & Public Health ; Nuclear Medicine ; Original Article ; Prediction models ; Radiation therapy ; Radiology ; Radiomics ; Radiotherapy ; Tumors ; Uterine cancer ; Uterus</subject><ispartof>Japanese journal of radiology, 2020-03, Vol.38 (3), p.265-273</ispartof><rights>Japan Radiological Society 2020</rights><rights>Japanese Journal of Radiology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8e6de93f746c3fa753e8fef5931fa35c209ae313c1e041b97fb94488853b91f3</citedby><cites>FETCH-LOGICAL-c465t-8e6de93f746c3fa753e8fef5931fa35c209ae313c1e041b97fb94488853b91f3</cites><orcidid>0000-0003-2389-0299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11604-019-00917-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11604-019-00917-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31907716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takada, Akiyo</creatorcontrib><creatorcontrib>Yokota, Hajime</creatorcontrib><creatorcontrib>Watanabe Nemoto, Miho</creatorcontrib><creatorcontrib>Horikoshi, Takuro</creatorcontrib><creatorcontrib>Matsushima, Jun</creatorcontrib><creatorcontrib>Uno, Takashi</creatorcontrib><title>A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions</title><title>Japanese journal of radiology</title><addtitle>Jpn J Radiol</addtitle><addtitle>Jpn J Radiol</addtitle><description>Purpose
This study aimed to identify the most appropriate volume of interest (VOI) setting in prognostic prediction using pretreatment magnetic resonance imaging (MRI) radiomic analysis for cervical cancer (CC) treated with definitive radiotherapy.
Materials and methods
The study participants were 87 patients who had undergone pretreatment MRI and definitive radiotherapy for CC. VOI
tumor
was created with tumor alone and VOI
+4 mm
–VOI
+20 mm
mechanically expanded by 4–20 mm around each VOI
tumor
in axial T2-weighted images (T2WI) and an apparent diffusion coefficient (ADC) map. A model was constructed to predict recurrence within the irradiation field within 2 years after treatment using imaging features from the VOI of each sequence. Sorting ability was evaluated by area under the receiver operator characteristic curve (AUC-ROC) analysis.
Results
VOI expansion improved AUC-ROCs compared with the predictive models of VOI
tumor
(0.59 and 0.67 in T2WI and ADC, respectively). The AUC-ROCs of the models with imaging features from expanded VOI
+4 mm
in T2WI and VOI
+4 mm
and VOI
+8 mm
in ADC were 0.82, 0.82, and 0.86, respectively.
Conclusion
Recurrence could be predicted with high accuracy using expanded VOI for CC treated with definitive radiotherapy, suggesting that including the pathological characteristics of invasive margins in radiomics may improve predictive ability.</description><subject>Cancer</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Diffusion coefficient</subject><subject>Imaging</subject><subject>Invasiveness</subject><subject>Irradiation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Nuclear Medicine</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Radiotherapy</subject><subject>Tumors</subject><subject>Uterine cancer</subject><subject>Uterus</subject><issn>1867-1071</issn><issn>1867-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFuFSEUhidGY2v1BVwYEjduRuHCwIy7pqnapMbEdOGOMHC4l4aBEZgm9wV9LplOrYkLVxD4_u-c5G-a1wS_JxiLD5kQjlmLydBiPBDR4ifNKem5aAnufzx9vAty0rzI-RZjzihjz5sTSgYsBOGnza9zNC2-uDZrFQIklMtijiha9PX7FUrKuDg5nZELaCmQXACkId05rTyqiXr_iOYExuniYlhzLrTWgTeoLFNMSMdQUvRI2RpHBqwLrrg72NzlAEnNRzSqDAZVgUKT0od1jAeVggt7NEE5RFO92i9mfZjrHvfyukOCfZ2bXzbPrPIZXj2cZ83Np8ubiy_t9bfPVxfn161mvCttD9zAQK1gXFOrREeht2C7gRKraKd3eFBACdUEMCPjIOw4MNb3fUfHgVh61rzbtHOKPxfIRU4ua_BeBYhLljtK2a4jvcAVffsPehuXFOpylRK1Bs5ZV6ndRukUc05g5ZzcpNJREizXkuVWsqwly_uS5ap-86BexgnMY-RPqxWgG5DrV9hD-jv7P9rfnLi2gA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Takada, Akiyo</creator><creator>Yokota, Hajime</creator><creator>Watanabe Nemoto, Miho</creator><creator>Horikoshi, Takuro</creator><creator>Matsushima, Jun</creator><creator>Uno, Takashi</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2389-0299</orcidid></search><sort><creationdate>20200301</creationdate><title>A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions</title><author>Takada, Akiyo ; Yokota, Hajime ; Watanabe Nemoto, Miho ; Horikoshi, Takuro ; Matsushima, Jun ; Uno, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8e6de93f746c3fa753e8fef5931fa35c209ae313c1e041b97fb94488853b91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Diffusion coefficient</topic><topic>Imaging</topic><topic>Invasiveness</topic><topic>Irradiation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Nuclear Medicine</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Radiotherapy</topic><topic>Tumors</topic><topic>Uterine cancer</topic><topic>Uterus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takada, Akiyo</creatorcontrib><creatorcontrib>Yokota, Hajime</creatorcontrib><creatorcontrib>Watanabe Nemoto, Miho</creatorcontrib><creatorcontrib>Horikoshi, Takuro</creatorcontrib><creatorcontrib>Matsushima, Jun</creatorcontrib><creatorcontrib>Uno, Takashi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Japanese journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takada, Akiyo</au><au>Yokota, Hajime</au><au>Watanabe Nemoto, Miho</au><au>Horikoshi, Takuro</au><au>Matsushima, Jun</au><au>Uno, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions</atitle><jtitle>Japanese journal of radiology</jtitle><stitle>Jpn J Radiol</stitle><addtitle>Jpn J Radiol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>1867-1071</issn><eissn>1867-108X</eissn><abstract>Purpose
This study aimed to identify the most appropriate volume of interest (VOI) setting in prognostic prediction using pretreatment magnetic resonance imaging (MRI) radiomic analysis for cervical cancer (CC) treated with definitive radiotherapy.
Materials and methods
The study participants were 87 patients who had undergone pretreatment MRI and definitive radiotherapy for CC. VOI
tumor
was created with tumor alone and VOI
+4 mm
–VOI
+20 mm
mechanically expanded by 4–20 mm around each VOI
tumor
in axial T2-weighted images (T2WI) and an apparent diffusion coefficient (ADC) map. A model was constructed to predict recurrence within the irradiation field within 2 years after treatment using imaging features from the VOI of each sequence. Sorting ability was evaluated by area under the receiver operator characteristic curve (AUC-ROC) analysis.
Results
VOI expansion improved AUC-ROCs compared with the predictive models of VOI
tumor
(0.59 and 0.67 in T2WI and ADC, respectively). The AUC-ROCs of the models with imaging features from expanded VOI
+4 mm
in T2WI and VOI
+4 mm
and VOI
+8 mm
in ADC were 0.82, 0.82, and 0.86, respectively.
Conclusion
Recurrence could be predicted with high accuracy using expanded VOI for CC treated with definitive radiotherapy, suggesting that including the pathological characteristics of invasive margins in radiomics may improve predictive ability.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>31907716</pmid><doi>10.1007/s11604-019-00917-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2389-0299</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-1071 |
ispartof | Japanese journal of radiology, 2020-03, Vol.38 (3), p.265-273 |
issn | 1867-1071 1867-108X |
language | eng |
recordid | cdi_proquest_journals_2373446645 |
source | SpringerLink Journals |
subjects | Cancer Cervical cancer Cervix Diffusion coefficient Imaging Invasiveness Irradiation Learning algorithms Machine learning Magnetic resonance imaging Medical imaging Medical prognosis Medicine Medicine & Public Health Nuclear Medicine Original Article Prediction models Radiation therapy Radiology Radiomics Radiotherapy Tumors Uterine cancer Uterus |
title | A multi-scanner study of MRI radiomics in uterine cervical cancer: prediction of in-field tumor control after definitive radiotherapy based on a machine learning method including peritumoral regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-scanner%20study%20of%20MRI%20radiomics%20in%20uterine%20cervical%20cancer:%20prediction%20of%20in-field%20tumor%20control%20after%20definitive%20radiotherapy%20based%20on%20a%20machine%20learning%20method%20including%20peritumoral%20regions&rft.jtitle=Japanese%20journal%20of%20radiology&rft.au=Takada,%20Akiyo&rft.date=2020-03-01&rft.volume=38&rft.issue=3&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=1867-1071&rft.eissn=1867-108X&rft_id=info:doi/10.1007/s11604-019-00917-0&rft_dat=%3Cproquest_cross%3E2334251870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2373446645&rft_id=info:pmid/31907716&rfr_iscdi=true |