An lower bound for computing the sum of even-ranked elements

Given a sequence A of 2n real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. The authors prove that, in the algebraic computation-tree model, this problem has time complexity ...(nlogn). This solves an open p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2009-07, Vol.109 (16), p.955-956
Hauptverfasser: Mörig, Marc, Rautenbach, Dieter, Smid, Michiel, Tusch, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 16
container_start_page 955
container_title Information processing letters
container_volume 109
creator Mörig, Marc
Rautenbach, Dieter
Smid, Michiel
Tusch, Jan
description Given a sequence A of 2n real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. The authors prove that, in the algebraic computation-tree model, this problem has time complexity ...(nlogn). This solves an open problem posed by Michael Shamos at the Canadian Conference on Computational Geometry in 2008. (ProQuest: ... denotes formulae/symbols omitted.)
doi_str_mv 10.1016/j.ipl.2009.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237296685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1777656631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695-209df39c17127e1d5af573963ff2935f6ae81c19ad9f0a416e14a80759540aa63</originalsourceid><addsrcrecordid>eNot0M1KxDAUBeAgCo6jD-AuuG-9N2mSBtwMg38w4Gb2IbaJTm2TmrSKb29lXJ3N4Rz4CLlGKBFQ3nblYexLBqBLECVAdUJWWCtWSER9SlYADApADefkIucOAGTF1YrcbQLt47dL9DXOoaU-JtrEYZynQ3ij07ujeR5o9NR9uVAkGz5cS13vBhemfEnOvO2zu_rPNdk_3O-3T8Xu5fF5u9kVjdSiYKBbz3WDCply2ArrheJacu-Z5sJL62psUNtWe7AVSoeVrUEJLSqwVvI1uTnOjil-zi5PpotzCsujYVwxLWUtlhIeS02KOSfnzZgOg00_BsH8EZnOLETmj8iAMAsR_wXZ0FkC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237296685</pqid></control><display><type>article</type><title>An lower bound for computing the sum of even-ranked elements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mörig, Marc ; Rautenbach, Dieter ; Smid, Michiel ; Tusch, Jan</creator><creatorcontrib>Mörig, Marc ; Rautenbach, Dieter ; Smid, Michiel ; Tusch, Jan</creatorcontrib><description>Given a sequence A of 2n real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. The authors prove that, in the algebraic computation-tree model, this problem has time complexity ...(nlogn). This solves an open problem posed by Michael Shamos at the Canadian Conference on Computational Geometry in 2008. (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2009.05.004</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier Sequoia S.A</publisher><subject>Algebra ; Complexity theory ; Mathematical models ; Problem solving ; Studies</subject><ispartof>Information processing letters, 2009-07, Vol.109 (16), p.955-956</ispartof><rights>Copyright Elsevier Sequoia S.A. Jul 31, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c695-209df39c17127e1d5af573963ff2935f6ae81c19ad9f0a416e14a80759540aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mörig, Marc</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><creatorcontrib>Tusch, Jan</creatorcontrib><title>An lower bound for computing the sum of even-ranked elements</title><title>Information processing letters</title><description>Given a sequence A of 2n real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. The authors prove that, in the algebraic computation-tree model, this problem has time complexity ...(nlogn). This solves an open problem posed by Michael Shamos at the Canadian Conference on Computational Geometry in 2008. (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Algebra</subject><subject>Complexity theory</subject><subject>Mathematical models</subject><subject>Problem solving</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNot0M1KxDAUBeAgCo6jD-AuuG-9N2mSBtwMg38w4Gb2IbaJTm2TmrSKb29lXJ3N4Rz4CLlGKBFQ3nblYexLBqBLECVAdUJWWCtWSER9SlYADApADefkIucOAGTF1YrcbQLt47dL9DXOoaU-JtrEYZynQ3ij07ujeR5o9NR9uVAkGz5cS13vBhemfEnOvO2zu_rPNdk_3O-3T8Xu5fF5u9kVjdSiYKBbz3WDCply2ArrheJacu-Z5sJL62psUNtWe7AVSoeVrUEJLSqwVvI1uTnOjil-zi5PpotzCsujYVwxLWUtlhIeS02KOSfnzZgOg00_BsH8EZnOLETmj8iAMAsR_wXZ0FkC</recordid><startdate>20090731</startdate><enddate>20090731</enddate><creator>Mörig, Marc</creator><creator>Rautenbach, Dieter</creator><creator>Smid, Michiel</creator><creator>Tusch, Jan</creator><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090731</creationdate><title>An lower bound for computing the sum of even-ranked elements</title><author>Mörig, Marc ; Rautenbach, Dieter ; Smid, Michiel ; Tusch, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695-209df39c17127e1d5af573963ff2935f6ae81c19ad9f0a416e14a80759540aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Complexity theory</topic><topic>Mathematical models</topic><topic>Problem solving</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mörig, Marc</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>Smid, Michiel</creatorcontrib><creatorcontrib>Tusch, Jan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mörig, Marc</au><au>Rautenbach, Dieter</au><au>Smid, Michiel</au><au>Tusch, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An lower bound for computing the sum of even-ranked elements</atitle><jtitle>Information processing letters</jtitle><date>2009-07-31</date><risdate>2009</risdate><volume>109</volume><issue>16</issue><spage>955</spage><epage>956</epage><pages>955-956</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Given a sequence A of 2n real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. The authors prove that, in the algebraic computation-tree model, this problem has time complexity ...(nlogn). This solves an open problem posed by Michael Shamos at the Canadian Conference on Computational Geometry in 2008. (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>Amsterdam</cop><pub>Elsevier Sequoia S.A</pub><doi>10.1016/j.ipl.2009.05.004</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2009-07, Vol.109 (16), p.955-956
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237296685
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Complexity theory
Mathematical models
Problem solving
Studies
title An lower bound for computing the sum of even-ranked elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20lower%20bound%20for%20computing%20the%20sum%20of%20even-ranked%20elements&rft.jtitle=Information%20processing%20letters&rft.au=M%C3%B6rig,%20Marc&rft.date=2009-07-31&rft.volume=109&rft.issue=16&rft.spage=955&rft.epage=956&rft.pages=955-956&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2009.05.004&rft_dat=%3Cproquest_cross%3E1777656631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237296685&rft_id=info:pmid/&rfr_iscdi=true