An “Art Gallery Theorem” for pyramids

Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2009-06, Vol.109 (13), p.719-721
Hauptverfasser: Abellanas, M., Canales, S., Hernández-Peñalver, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 13
container_start_page 719
container_title Information processing letters
container_volume 109
creator Abellanas, M.
Canales, S.
Hernández-Peñalver, G.
description Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proof leads to a linear time algorithm for placing those guards.
doi_str_mv 10.1016/j.ipl.2009.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237292614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002001900900091X</els_id><sourcerecordid>1708122921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwAWwREgNDwrOdOLGYqgoKUiWWMluO8ywcpUmxU6Ru_RD4uX4JKa0Ymd5y7r16h5BrCgkFKu7rxK2ahAHIBHgCND0hI1rkLBaUylMyAmAQA5VwTi5CqAFApDwfkbtJG-22XxPfRzPdNOg30eIdO4_L3fY7sp2PVhuvl64Kl-TM6ibg1fGOydvT42L6HM9fZy_TyTw2HEQfM0i1kQUtU2BoKp3lheEaBVppkWcVlqZMpSiqknLETDOoslykSLnNwFY5H5ObQ-_Kdx9rDL2qu7Vvh0nFeM4kEzQdIHqAjO9C8GjVyrul9htFQe2FqFoNQtReiAKu4DdzeyzWwejGet0aF_6CjGaCSpYN3MOBw-HLT4deBeOwNVg5j6ZXVef-WfkBKnN16w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237292614</pqid></control><display><type>article</type><title>An “Art Gallery Theorem” for pyramids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</creator><creatorcontrib>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</creatorcontrib><description>Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proof leads to a linear time algorithm for placing those guards.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2009.03.014</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Art galleries &amp; museums ; Art Gallery ; Computational geometry ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry ; Mathematics ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Orthogonal polygon ; Polygons ; Pyramid ; Sciences and techniques of general use ; Studies ; Theoretical computing ; Visibility</subject><ispartof>Information processing letters, 2009-06, Vol.109 (13), p.719-721</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2009.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21561925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abellanas, M.</creatorcontrib><creatorcontrib>Canales, S.</creatorcontrib><creatorcontrib>Hernández-Peñalver, G.</creatorcontrib><title>An “Art Gallery Theorem” for pyramids</title><title>Information processing letters</title><description>Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proof leads to a linear time algorithm for placing those guards.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Art galleries &amp; museums</subject><subject>Art Gallery</subject><subject>Computational geometry</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Orthogonal polygon</subject><subject>Polygons</subject><subject>Pyramid</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Visibility</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwAWwREgNDwrOdOLGYqgoKUiWWMluO8ywcpUmxU6Ru_RD4uX4JKa0Ymd5y7r16h5BrCgkFKu7rxK2ahAHIBHgCND0hI1rkLBaUylMyAmAQA5VwTi5CqAFApDwfkbtJG-22XxPfRzPdNOg30eIdO4_L3fY7sp2PVhuvl64Kl-TM6ibg1fGOydvT42L6HM9fZy_TyTw2HEQfM0i1kQUtU2BoKp3lheEaBVppkWcVlqZMpSiqknLETDOoslykSLnNwFY5H5ObQ-_Kdx9rDL2qu7Vvh0nFeM4kEzQdIHqAjO9C8GjVyrul9htFQe2FqFoNQtReiAKu4DdzeyzWwejGet0aF_6CjGaCSpYN3MOBw-HLT4deBeOwNVg5j6ZXVef-WfkBKnN16w</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Abellanas, M.</creator><creator>Canales, S.</creator><creator>Hernández-Peñalver, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090615</creationdate><title>An “Art Gallery Theorem” for pyramids</title><author>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Art galleries &amp; museums</topic><topic>Art Gallery</topic><topic>Computational geometry</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Orthogonal polygon</topic><topic>Polygons</topic><topic>Pyramid</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abellanas, M.</creatorcontrib><creatorcontrib>Canales, S.</creatorcontrib><creatorcontrib>Hernández-Peñalver, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abellanas, M.</au><au>Canales, S.</au><au>Hernández-Peñalver, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An “Art Gallery Theorem” for pyramids</atitle><jtitle>Information processing letters</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>109</volume><issue>13</issue><spage>719</spage><epage>721</epage><pages>719-721</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proof leads to a linear time algorithm for placing those guards.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2009.03.014</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2009-06, Vol.109 (13), p.719-721
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237292614
source Access via ScienceDirect (Elsevier)
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Art galleries & museums
Art Gallery
Computational geometry
Computer science
control theory
systems
Exact sciences and technology
Geometry
Mathematics
Miscellaneous
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Orthogonal polygon
Polygons
Pyramid
Sciences and techniques of general use
Studies
Theoretical computing
Visibility
title An “Art Gallery Theorem” for pyramids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T08%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20%E2%80%9CArt%20Gallery%20Theorem%E2%80%9D%20for%20pyramids&rft.jtitle=Information%20processing%20letters&rft.au=Abellanas,%20M.&rft.date=2009-06-15&rft.volume=109&rft.issue=13&rft.spage=719&rft.epage=721&rft.pages=719-721&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2009.03.014&rft_dat=%3Cproquest_cross%3E1708122921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237292614&rft_id=info:pmid/&rft_els_id=S002001900900091X&rfr_iscdi=true