An “Art Gallery Theorem” for pyramids
Every orthogonal polygon can be illuminated by ⌊ n / 4 ⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈ n / 6 ⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proo...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2009-06, Vol.109 (13), p.719-721 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | 13 |
container_start_page | 719 |
container_title | Information processing letters |
container_volume | 109 |
creator | Abellanas, M. Canales, S. Hernández-Peñalver, G. |
description | Every orthogonal polygon can be illuminated by
⌊
n
/
4
⌋
lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that
⌈
n
/
6
⌉
guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of
n vertices. Our proof leads to a linear time algorithm for placing those guards. |
doi_str_mv | 10.1016/j.ipl.2009.03.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237292614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002001900900091X</els_id><sourcerecordid>1708122921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwAWwREgNDwrOdOLGYqgoKUiWWMluO8ywcpUmxU6Ru_RD4uX4JKa0Ymd5y7r16h5BrCgkFKu7rxK2ahAHIBHgCND0hI1rkLBaUylMyAmAQA5VwTi5CqAFApDwfkbtJG-22XxPfRzPdNOg30eIdO4_L3fY7sp2PVhuvl64Kl-TM6ibg1fGOydvT42L6HM9fZy_TyTw2HEQfM0i1kQUtU2BoKp3lheEaBVppkWcVlqZMpSiqknLETDOoslykSLnNwFY5H5ObQ-_Kdx9rDL2qu7Vvh0nFeM4kEzQdIHqAjO9C8GjVyrul9htFQe2FqFoNQtReiAKu4DdzeyzWwejGet0aF_6CjGaCSpYN3MOBw-HLT4deBeOwNVg5j6ZXVef-WfkBKnN16w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237292614</pqid></control><display><type>article</type><title>An “Art Gallery Theorem” for pyramids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</creator><creatorcontrib>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</creatorcontrib><description>Every orthogonal polygon can be illuminated by
⌊
n
/
4
⌋
lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that
⌈
n
/
6
⌉
guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of
n vertices. Our proof leads to a linear time algorithm for placing those guards.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2009.03.014</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Art galleries & museums ; Art Gallery ; Computational geometry ; Computer science; control theory; systems ; Exact sciences and technology ; Geometry ; Mathematics ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Orthogonal polygon ; Polygons ; Pyramid ; Sciences and techniques of general use ; Studies ; Theoretical computing ; Visibility</subject><ispartof>Information processing letters, 2009-06, Vol.109 (13), p.719-721</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2009.03.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21561925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abellanas, M.</creatorcontrib><creatorcontrib>Canales, S.</creatorcontrib><creatorcontrib>Hernández-Peñalver, G.</creatorcontrib><title>An “Art Gallery Theorem” for pyramids</title><title>Information processing letters</title><description>Every orthogonal polygon can be illuminated by
⌊
n
/
4
⌋
lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that
⌈
n
/
6
⌉
guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of
n vertices. Our proof leads to a linear time algorithm for placing those guards.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Art galleries & museums</subject><subject>Art Gallery</subject><subject>Computational geometry</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Orthogonal polygon</subject><subject>Polygons</subject><subject>Pyramid</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Visibility</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwAWwREgNDwrOdOLGYqgoKUiWWMluO8ywcpUmxU6Ru_RD4uX4JKa0Ymd5y7r16h5BrCgkFKu7rxK2ahAHIBHgCND0hI1rkLBaUylMyAmAQA5VwTi5CqAFApDwfkbtJG-22XxPfRzPdNOg30eIdO4_L3fY7sp2PVhuvl64Kl-TM6ibg1fGOydvT42L6HM9fZy_TyTw2HEQfM0i1kQUtU2BoKp3lheEaBVppkWcVlqZMpSiqknLETDOoslykSLnNwFY5H5ObQ-_Kdx9rDL2qu7Vvh0nFeM4kEzQdIHqAjO9C8GjVyrul9htFQe2FqFoNQtReiAKu4DdzeyzWwejGet0aF_6CjGaCSpYN3MOBw-HLT4deBeOwNVg5j6ZXVef-WfkBKnN16w</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Abellanas, M.</creator><creator>Canales, S.</creator><creator>Hernández-Peñalver, G.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090615</creationdate><title>An “Art Gallery Theorem” for pyramids</title><author>Abellanas, M. ; Canales, S. ; Hernández-Peñalver, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-204ac981b402ecda578c3ae6ef9fe35debcb4968db13ee5a20d5764e13f50fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Art galleries & museums</topic><topic>Art Gallery</topic><topic>Computational geometry</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Orthogonal polygon</topic><topic>Polygons</topic><topic>Pyramid</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abellanas, M.</creatorcontrib><creatorcontrib>Canales, S.</creatorcontrib><creatorcontrib>Hernández-Peñalver, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abellanas, M.</au><au>Canales, S.</au><au>Hernández-Peñalver, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An “Art Gallery Theorem” for pyramids</atitle><jtitle>Information processing letters</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>109</volume><issue>13</issue><spage>719</spage><epage>721</epage><pages>719-721</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Every orthogonal polygon can be illuminated by
⌊
n
/
4
⌋
lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that
⌈
n
/
6
⌉
guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of
n vertices. Our proof leads to a linear time algorithm for placing those guards.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2009.03.014</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2009-06, Vol.109 (13), p.719-721 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_237292614 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Art galleries & museums Art Gallery Computational geometry Computer science control theory systems Exact sciences and technology Geometry Mathematics Miscellaneous Numerical analysis Numerical analysis. Scientific computation Numerical approximation Orthogonal polygon Polygons Pyramid Sciences and techniques of general use Studies Theoretical computing Visibility |
title | An “Art Gallery Theorem” for pyramids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T08%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20%E2%80%9CArt%20Gallery%20Theorem%E2%80%9D%20for%20pyramids&rft.jtitle=Information%20processing%20letters&rft.au=Abellanas,%20M.&rft.date=2009-06-15&rft.volume=109&rft.issue=13&rft.spage=719&rft.epage=721&rft.pages=719-721&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2009.03.014&rft_dat=%3Cproquest_cross%3E1708122921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237292614&rft_id=info:pmid/&rft_els_id=S002001900900091X&rfr_iscdi=true |