Approximating maximum weight K-colorable subgraphs in chordal graphs
We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.
Gespeichert in:
Veröffentlicht in: | Information processing letters 2009-03, Vol.109 (7), p.365-368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 7 |
container_start_page | 365 |
container_title | Information processing letters |
container_volume | 109 |
creator | Chakaravarthy, Venkatesan T. Roy, Sambuddha |
description | We present a 2-approximation algorithm for the problem of finding the maximum weight
K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is
O
(
K
(
n
+
m
)
)
, where
n and
m are the number of vertices and edges in the given graph. |
doi_str_mv | 10.1016/j.ipl.2008.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237289766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019008003645</els_id><sourcerecordid>1648549701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIHcIuQOCaMndR2xKkqq6jEBc6W49itozQOdsLy97hKxZHTjEZvmfcQusSQYcD0psls32YEgGeYZADsCM0wZySlGJfHaAZAIAVcwik6C6EBAFrkbIbuln3v3bfdycF2m2Qn4zruki9tN9sheUmVa52XVauTMFYbL_ttSGyXqK3ztWyT6XKOToxsg744zDl6f7h_Wz2l69fH59Vynaq8ZEMqOWcFoSwHSigxjC90ZUpt4lGZBZdUGUa1JEBqUzDFFJcVyXW1wJjXBa_zObqadOPLH6MOg2jc6LtoKUjOCC8ZpRGEJ5DyLgSvjeh9jOd_BAax70o0InYl9l0JTETsKnKuD8IyKNkaLztlwx-RYFIUBYaIu51wOqb8tNqLoKzulK6t12oQtbP_uPwCq9J-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237289766</pqid></control><display><type>article</type><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</creator><creatorcontrib>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</creatorcontrib><description>We present a 2-approximation algorithm for the problem of finding the maximum weight
K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is
O
(
K
(
n
+
m
)
)
, where
n and
m are the number of vertices and edges in the given graph.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2008.12.007</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Approximation algorithms ; Chordal graphs ; Coloring ; Computer science; control theory; systems ; Exact sciences and technology ; Graph algorithms ; Graph coloring ; Information retrieval. Graph ; Interval graphs ; Miscellaneous ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2009-03, Vol.109 (7), p.365-368</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 16, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</citedby><cites>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2008.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21244410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakaravarthy, Venkatesan T.</creatorcontrib><creatorcontrib>Roy, Sambuddha</creatorcontrib><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><title>Information processing letters</title><description>We present a 2-approximation algorithm for the problem of finding the maximum weight
K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is
O
(
K
(
n
+
m
)
)
, where
n and
m are the number of vertices and edges in the given graph.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Chordal graphs</subject><subject>Coloring</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph coloring</subject><subject>Information retrieval. Graph</subject><subject>Interval graphs</subject><subject>Miscellaneous</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIHcIuQOCaMndR2xKkqq6jEBc6W49itozQOdsLy97hKxZHTjEZvmfcQusSQYcD0psls32YEgGeYZADsCM0wZySlGJfHaAZAIAVcwik6C6EBAFrkbIbuln3v3bfdycF2m2Qn4zruki9tN9sheUmVa52XVauTMFYbL_ttSGyXqK3ztWyT6XKOToxsg744zDl6f7h_Wz2l69fH59Vynaq8ZEMqOWcFoSwHSigxjC90ZUpt4lGZBZdUGUa1JEBqUzDFFJcVyXW1wJjXBa_zObqadOPLH6MOg2jc6LtoKUjOCC8ZpRGEJ5DyLgSvjeh9jOd_BAax70o0InYl9l0JTETsKnKuD8IyKNkaLztlwx-RYFIUBYaIu51wOqb8tNqLoKzulK6t12oQtbP_uPwCq9J-dA</recordid><startdate>20090316</startdate><enddate>20090316</enddate><creator>Chakaravarthy, Venkatesan T.</creator><creator>Roy, Sambuddha</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090316</creationdate><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><author>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Chordal graphs</topic><topic>Coloring</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph coloring</topic><topic>Information retrieval. Graph</topic><topic>Interval graphs</topic><topic>Miscellaneous</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakaravarthy, Venkatesan T.</creatorcontrib><creatorcontrib>Roy, Sambuddha</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakaravarthy, Venkatesan T.</au><au>Roy, Sambuddha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating maximum weight K-colorable subgraphs in chordal graphs</atitle><jtitle>Information processing letters</jtitle><date>2009-03-16</date><risdate>2009</risdate><volume>109</volume><issue>7</issue><spage>365</spage><epage>368</epage><pages>365-368</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We present a 2-approximation algorithm for the problem of finding the maximum weight
K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is
O
(
K
(
n
+
m
)
)
, where
n and
m are the number of vertices and edges in the given graph.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2008.12.007</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2009-03, Vol.109 (7), p.365-368 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_237289766 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation Approximation algorithms Chordal graphs Coloring Computer science control theory systems Exact sciences and technology Graph algorithms Graph coloring Information retrieval. Graph Interval graphs Miscellaneous Studies Theoretical computing |
title | Approximating maximum weight K-colorable subgraphs in chordal graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20maximum%20weight%20K-colorable%20subgraphs%20in%20chordal%20graphs&rft.jtitle=Information%20processing%20letters&rft.au=Chakaravarthy,%20Venkatesan%20T.&rft.date=2009-03-16&rft.volume=109&rft.issue=7&rft.spage=365&rft.epage=368&rft.pages=365-368&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2008.12.007&rft_dat=%3Cproquest_cross%3E1648549701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237289766&rft_id=info:pmid/&rft_els_id=S0020019008003645&rfr_iscdi=true |