Approximating maximum weight K-colorable subgraphs in chordal graphs

We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2009-03, Vol.109 (7), p.365-368
Hauptverfasser: Chakaravarthy, Venkatesan T., Roy, Sambuddha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 7
container_start_page 365
container_title Information processing letters
container_volume 109
creator Chakaravarthy, Venkatesan T.
Roy, Sambuddha
description We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.
doi_str_mv 10.1016/j.ipl.2008.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237289766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019008003645</els_id><sourcerecordid>1648549701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIHcIuQOCaMndR2xKkqq6jEBc6W49itozQOdsLy97hKxZHTjEZvmfcQusSQYcD0psls32YEgGeYZADsCM0wZySlGJfHaAZAIAVcwik6C6EBAFrkbIbuln3v3bfdycF2m2Qn4zruki9tN9sheUmVa52XVauTMFYbL_ttSGyXqK3ztWyT6XKOToxsg744zDl6f7h_Wz2l69fH59Vynaq8ZEMqOWcFoSwHSigxjC90ZUpt4lGZBZdUGUa1JEBqUzDFFJcVyXW1wJjXBa_zObqadOPLH6MOg2jc6LtoKUjOCC8ZpRGEJ5DyLgSvjeh9jOd_BAax70o0InYl9l0JTETsKnKuD8IyKNkaLztlwx-RYFIUBYaIu51wOqb8tNqLoKzulK6t12oQtbP_uPwCq9J-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237289766</pqid></control><display><type>article</type><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</creator><creatorcontrib>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</creatorcontrib><description>We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2008.12.007</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Approximation algorithms ; Chordal graphs ; Coloring ; Computer science; control theory; systems ; Exact sciences and technology ; Graph algorithms ; Graph coloring ; Information retrieval. Graph ; Interval graphs ; Miscellaneous ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2009-03, Vol.109 (7), p.365-368</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 16, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</citedby><cites>FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2008.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21244410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakaravarthy, Venkatesan T.</creatorcontrib><creatorcontrib>Roy, Sambuddha</creatorcontrib><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><title>Information processing letters</title><description>We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Chordal graphs</subject><subject>Coloring</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph coloring</subject><subject>Information retrieval. Graph</subject><subject>Interval graphs</subject><subject>Miscellaneous</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIHcIuQOCaMndR2xKkqq6jEBc6W49itozQOdsLy97hKxZHTjEZvmfcQusSQYcD0psls32YEgGeYZADsCM0wZySlGJfHaAZAIAVcwik6C6EBAFrkbIbuln3v3bfdycF2m2Qn4zruki9tN9sheUmVa52XVauTMFYbL_ttSGyXqK3ztWyT6XKOToxsg744zDl6f7h_Wz2l69fH59Vynaq8ZEMqOWcFoSwHSigxjC90ZUpt4lGZBZdUGUa1JEBqUzDFFJcVyXW1wJjXBa_zObqadOPLH6MOg2jc6LtoKUjOCC8ZpRGEJ5DyLgSvjeh9jOd_BAax70o0InYl9l0JTETsKnKuD8IyKNkaLztlwx-RYFIUBYaIu51wOqb8tNqLoKzulK6t12oQtbP_uPwCq9J-dA</recordid><startdate>20090316</startdate><enddate>20090316</enddate><creator>Chakaravarthy, Venkatesan T.</creator><creator>Roy, Sambuddha</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090316</creationdate><title>Approximating maximum weight K-colorable subgraphs in chordal graphs</title><author>Chakaravarthy, Venkatesan T. ; Roy, Sambuddha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a8874267306262f785ebf9ef742cf58a6cf76ea202df47c7c8ab23eb5118d48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Chordal graphs</topic><topic>Coloring</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph coloring</topic><topic>Information retrieval. Graph</topic><topic>Interval graphs</topic><topic>Miscellaneous</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakaravarthy, Venkatesan T.</creatorcontrib><creatorcontrib>Roy, Sambuddha</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakaravarthy, Venkatesan T.</au><au>Roy, Sambuddha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating maximum weight K-colorable subgraphs in chordal graphs</atitle><jtitle>Information processing letters</jtitle><date>2009-03-16</date><risdate>2009</risdate><volume>109</volume><issue>7</issue><spage>365</spage><epage>368</epage><pages>365-368</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O ( K ( n + m ) ) , where n and m are the number of vertices and edges in the given graph.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2008.12.007</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2009-03, Vol.109 (7), p.365-368
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237289766
source ScienceDirect Journals (5 years ago - present)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation
Approximation algorithms
Chordal graphs
Coloring
Computer science
control theory
systems
Exact sciences and technology
Graph algorithms
Graph coloring
Information retrieval. Graph
Interval graphs
Miscellaneous
Studies
Theoretical computing
title Approximating maximum weight K-colorable subgraphs in chordal graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20maximum%20weight%20K-colorable%20subgraphs%20in%20chordal%20graphs&rft.jtitle=Information%20processing%20letters&rft.au=Chakaravarthy,%20Venkatesan%20T.&rft.date=2009-03-16&rft.volume=109&rft.issue=7&rft.spage=365&rft.epage=368&rft.pages=365-368&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2008.12.007&rft_dat=%3Cproquest_cross%3E1648549701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237289766&rft_id=info:pmid/&rft_els_id=S0020019008003645&rfr_iscdi=true