Topological defects produce exotic mechanics in complex metamaterials

The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-03, Vol.16 (3), p.307-311
Hauptverfasser: Meeussen, Anne S., Oğuz, Erdal C., Shokef, Yair, Hecke, Martin van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 3
container_start_page 307
container_title Nature physics
container_volume 16
creator Meeussen, Anne S.
Oğuz, Erdal C.
Shokef, Yair
Hecke, Martin van
description The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials. In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.
doi_str_mv 10.1038/s41567-019-0763-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2372863470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372863470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2WazRyn1DxS81HNIJ0ndsrtZky3Ub2_Kip48zTC892bmR8gtg3sGQj2kki1kRYHVFCopqDwjM1aVC8pLxc5_-0pckquU9gAll0zMyGoThtCGXYOmLazzDsdUDDHYA7rCHcPYYNE5_DB9g6lo-gJDN7TumIej6czoYmPadE0ufC7u5qfOyfvTarN8oeu359fl45qiYHKkautQGmuUMF6UHmrLFgbrmnvLGXqbH0HPUcFWcmFqXzED0oIDL2qrwIg5uZty84WfB5dGvQ-H2OeVmouKKynKCrKKTSqMIaXovB5i05n4pRnoEy090dKZlj7R0jJ7-ORJWdvvXPxL_t_0DbX6bfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372863470</pqid></control><display><type>article</type><title>Topological defects produce exotic mechanics in complex metamaterials</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</creator><creatorcontrib>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</creatorcontrib><description>The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials. In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0763-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/923 ; 639/766/119/2792/4129 ; Antiferromagnetism ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Complexity ; Condensed Matter Physics ; Deformation ; Design ; Design defects ; Electrons ; Ferromagnetism ; Frustration ; Letter ; Mathematical and Computational Physics ; Metamaterials ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Theoretical ; Topology</subject><ispartof>Nature physics, 2020-03, Vol.16 (3), p.307-311</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</citedby><cites>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</cites><orcidid>0000-0002-1195-4614 ; 0000-0003-1243-0318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0763-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0763-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meeussen, Anne S.</creatorcontrib><creatorcontrib>Oğuz, Erdal C.</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><creatorcontrib>Hecke, Martin van</creatorcontrib><title>Topological defects produce exotic mechanics in complex metamaterials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials. In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</description><subject>639/301/1023/303</subject><subject>639/301/923</subject><subject>639/766/119/2792/4129</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Complexity</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Design</subject><subject>Design defects</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Frustration</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Metamaterials</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2WazRyn1DxS81HNIJ0ndsrtZky3Ub2_Kip48zTC892bmR8gtg3sGQj2kki1kRYHVFCopqDwjM1aVC8pLxc5_-0pckquU9gAll0zMyGoThtCGXYOmLazzDsdUDDHYA7rCHcPYYNE5_DB9g6lo-gJDN7TumIej6czoYmPadE0ufC7u5qfOyfvTarN8oeu359fl45qiYHKkautQGmuUMF6UHmrLFgbrmnvLGXqbH0HPUcFWcmFqXzED0oIDL2qrwIg5uZty84WfB5dGvQ-H2OeVmouKKynKCrKKTSqMIaXovB5i05n4pRnoEy090dKZlj7R0jJ7-ORJWdvvXPxL_t_0DbX6bfU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Meeussen, Anne S.</creator><creator>Oğuz, Erdal C.</creator><creator>Shokef, Yair</creator><creator>Hecke, Martin van</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1195-4614</orcidid><orcidid>https://orcid.org/0000-0003-1243-0318</orcidid></search><sort><creationdate>20200301</creationdate><title>Topological defects produce exotic mechanics in complex metamaterials</title><author>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/303</topic><topic>639/301/923</topic><topic>639/766/119/2792/4129</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Complexity</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Design</topic><topic>Design defects</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Frustration</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Metamaterials</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeussen, Anne S.</creatorcontrib><creatorcontrib>Oğuz, Erdal C.</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><creatorcontrib>Hecke, Martin van</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeussen, Anne S.</au><au>Oğuz, Erdal C.</au><au>Shokef, Yair</au><au>Hecke, Martin van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological defects produce exotic mechanics in complex metamaterials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>307</spage><epage>311</epage><pages>307-311</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials. In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0763-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1195-4614</orcidid><orcidid>https://orcid.org/0000-0003-1243-0318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-03, Vol.16 (3), p.307-311
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2372863470
source SpringerLink Journals; Nature Journals Online
subjects 639/301/1023/303
639/301/923
639/766/119/2792/4129
Antiferromagnetism
Atomic
Classical and Continuum Physics
Complex Systems
Complexity
Condensed Matter Physics
Deformation
Design
Design defects
Electrons
Ferromagnetism
Frustration
Letter
Mathematical and Computational Physics
Metamaterials
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Theoretical
Topology
title Topological defects produce exotic mechanics in complex metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20defects%20produce%20exotic%20mechanics%20in%20complex%20metamaterials&rft.jtitle=Nature%20physics&rft.au=Meeussen,%20Anne%20S.&rft.date=2020-03-01&rft.volume=16&rft.issue=3&rft.spage=307&rft.epage=311&rft.pages=307-311&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0763-6&rft_dat=%3Cproquest_cross%3E2372863470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372863470&rft_id=info:pmid/&rfr_iscdi=true