Topological defects produce exotic mechanics in complex metamaterials
The basic tenet of metamaterials is that the architecture controls the physics 1 – 12 . So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials 13 – 15 . Here we provide a systematic strategy for...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-03, Vol.16 (3), p.307-311 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 3 |
container_start_page | 307 |
container_title | Nature physics |
container_volume | 16 |
creator | Meeussen, Anne S. Oğuz, Erdal C. Shokef, Yair Hecke, Martin van |
description | The basic tenet of metamaterials is that the architecture controls the physics
1
–
12
. So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials
13
–
15
. Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials.
In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions. |
doi_str_mv | 10.1038/s41567-019-0763-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2372863470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372863470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2WazRyn1DxS81HNIJ0ndsrtZky3Ub2_Kip48zTC892bmR8gtg3sGQj2kki1kRYHVFCopqDwjM1aVC8pLxc5_-0pckquU9gAll0zMyGoThtCGXYOmLazzDsdUDDHYA7rCHcPYYNE5_DB9g6lo-gJDN7TumIej6czoYmPadE0ufC7u5qfOyfvTarN8oeu359fl45qiYHKkautQGmuUMF6UHmrLFgbrmnvLGXqbH0HPUcFWcmFqXzED0oIDL2qrwIg5uZty84WfB5dGvQ-H2OeVmouKKynKCrKKTSqMIaXovB5i05n4pRnoEy090dKZlj7R0jJ7-ORJWdvvXPxL_t_0DbX6bfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372863470</pqid></control><display><type>article</type><title>Topological defects produce exotic mechanics in complex metamaterials</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</creator><creatorcontrib>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</creatorcontrib><description>The basic tenet of metamaterials is that the architecture controls the physics
1
–
12
. So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials
13
–
15
. Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials.
In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0763-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1023/303 ; 639/301/923 ; 639/766/119/2792/4129 ; Antiferromagnetism ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Complexity ; Condensed Matter Physics ; Deformation ; Design ; Design defects ; Electrons ; Ferromagnetism ; Frustration ; Letter ; Mathematical and Computational Physics ; Metamaterials ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Theoretical ; Topology</subject><ispartof>Nature physics, 2020-03, Vol.16 (3), p.307-311</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</citedby><cites>FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</cites><orcidid>0000-0002-1195-4614 ; 0000-0003-1243-0318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0763-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0763-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meeussen, Anne S.</creatorcontrib><creatorcontrib>Oğuz, Erdal C.</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><creatorcontrib>Hecke, Martin van</creatorcontrib><title>Topological defects produce exotic mechanics in complex metamaterials</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The basic tenet of metamaterials is that the architecture controls the physics
1
–
12
. So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials
13
–
15
. Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials.
In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</description><subject>639/301/1023/303</subject><subject>639/301/923</subject><subject>639/766/119/2792/4129</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Complexity</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Design</subject><subject>Design defects</subject><subject>Electrons</subject><subject>Ferromagnetism</subject><subject>Frustration</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Metamaterials</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC5-gk2WazRyn1DxS81HNIJ0ndsrtZky3Ub2_Kip48zTC892bmR8gtg3sGQj2kki1kRYHVFCopqDwjM1aVC8pLxc5_-0pckquU9gAll0zMyGoThtCGXYOmLazzDsdUDDHYA7rCHcPYYNE5_DB9g6lo-gJDN7TumIej6czoYmPadE0ufC7u5qfOyfvTarN8oeu359fl45qiYHKkautQGmuUMF6UHmrLFgbrmnvLGXqbH0HPUcFWcmFqXzED0oIDL2qrwIg5uZty84WfB5dGvQ-H2OeVmouKKynKCrKKTSqMIaXovB5i05n4pRnoEy090dKZlj7R0jJ7-ORJWdvvXPxL_t_0DbX6bfU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Meeussen, Anne S.</creator><creator>Oğuz, Erdal C.</creator><creator>Shokef, Yair</creator><creator>Hecke, Martin van</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1195-4614</orcidid><orcidid>https://orcid.org/0000-0003-1243-0318</orcidid></search><sort><creationdate>20200301</creationdate><title>Topological defects produce exotic mechanics in complex metamaterials</title><author>Meeussen, Anne S. ; Oğuz, Erdal C. ; Shokef, Yair ; Hecke, Martin van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8bec6ada83af34f09d15ac992fd21cfd038cf2c80b623a9f71a06d0e0f39d80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1023/303</topic><topic>639/301/923</topic><topic>639/766/119/2792/4129</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Complexity</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Design</topic><topic>Design defects</topic><topic>Electrons</topic><topic>Ferromagnetism</topic><topic>Frustration</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Metamaterials</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meeussen, Anne S.</creatorcontrib><creatorcontrib>Oğuz, Erdal C.</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><creatorcontrib>Hecke, Martin van</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meeussen, Anne S.</au><au>Oğuz, Erdal C.</au><au>Shokef, Yair</au><au>Hecke, Martin van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological defects produce exotic mechanics in complex metamaterials</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>307</spage><epage>311</epage><pages>307-311</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The basic tenet of metamaterials is that the architecture controls the physics
1
–
12
. So far, most studies have considered defect-free architectures. However, defects, and particularly topological defects, play a crucial role in natural materials
13
–
15
. Here we provide a systematic strategy for introducing such defects in mechanical metamaterials. We first present metamaterials that are a mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, then design an exponential number of frustration-free metamaterials and finally introduce topological defects by rotating a string of building blocks in these metamaterials. We uncover the distinct mechanical signature of topological defects using experiments and simulations, and leverage this to design complex metamaterials in which external forces steer deformations and stresses towards complementary parts of the system. Our work presents a new avenue to systematically including spatial complexity, frustration and topology in mechanical metamaterials.
In natural materials, defects determine many properties. In spin-analogue mechanical metamaterials, deterministically inserted topological defects enable the design of complex deformation and stress distributions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0763-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1195-4614</orcidid><orcidid>https://orcid.org/0000-0003-1243-0318</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-03, Vol.16 (3), p.307-311 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2372863470 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/1023/303 639/301/923 639/766/119/2792/4129 Antiferromagnetism Atomic Classical and Continuum Physics Complex Systems Complexity Condensed Matter Physics Deformation Design Design defects Electrons Ferromagnetism Frustration Letter Mathematical and Computational Physics Metamaterials Molecular Optical and Plasma Physics Physics Physics and Astronomy Theoretical Topology |
title | Topological defects produce exotic mechanics in complex metamaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20defects%20produce%20exotic%20mechanics%20in%20complex%20metamaterials&rft.jtitle=Nature%20physics&rft.au=Meeussen,%20Anne%20S.&rft.date=2020-03-01&rft.volume=16&rft.issue=3&rft.spage=307&rft.epage=311&rft.pages=307-311&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0763-6&rft_dat=%3Cproquest_cross%3E2372863470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372863470&rft_id=info:pmid/&rfr_iscdi=true |