Network experiment demonstrates converse symmetry breaking

Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-03, Vol.16 (3), p.351-356
Hauptverfasser: Molnar, Ferenc, Nishikawa, Takashi, Motter, Adilson E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 3
container_start_page 351
container_title Nature physics
container_volume 16
creator Molnar, Ferenc
Nishikawa, Takashi
Motter, Adilson E.
description Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be non-identical in order to exhibit identical behaviour, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably non-identical and that converse symmetry breaking persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behaviour. An experiment with three alternating-current generators demonstrates converse symmetry breaking—a phenomenon whereby the system achieves frequency synchronization when its component systems are tuned asymmetrically.
doi_str_mv 10.1038/s41567-019-0742-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2372861287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2372861287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cde58aa53c1cea064f4c749d7dc1aad22e13e609b47e59728174f131e483778e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRt8tmM7bKjiS6pggdlynUvVliTFdoH8e1wFwcR0NzzvfTyEnAO7BCbMVZRQKk0ZVJRpyelwQCagZUm5NHD422txTE5iXDMmuQIxIddPmD77sCnwa4th1WKXihrbvospuISx8H33gSFiEYe2xRSGYhHQbVbd8pQcNe4t4tlPnZLXu9uX2QOdP98_zm7m1AtQifoaS-NcKTx4dEzJRnotq1rXHpyrOUcQqFi1kBrLSnOTT21AAEojtDYopuRinLsN_fsOY7Lrfhe6vNJykXkF3OhMwUj50McYsLHb_I4LgwVm94rsqMhmRXavyA45w8dMzGy3xPA3-f_QN6aDak0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372861287</pqid></control><display><type>article</type><title>Network experiment demonstrates converse symmetry breaking</title><source>Nature</source><source>SpringerNature Journals</source><creator>Molnar, Ferenc ; Nishikawa, Takashi ; Motter, Adilson E.</creator><creatorcontrib>Molnar, Ferenc ; Nishikawa, Takashi ; Motter, Adilson E.</creatorcontrib><description>Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be non-identical in order to exhibit identical behaviour, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably non-identical and that converse symmetry breaking persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behaviour. An experiment with three alternating-current generators demonstrates converse symmetry breaking—a phenomenon whereby the system achieves frequency synchronization when its component systems are tuned asymmetrically.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0742-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/530/2801 ; 639/766/530/2803 ; Atomic ; Broken symmetry ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Frequency synchronization ; Mathematical and Computational Physics ; Molecular ; Noise levels ; Optical and Plasma Physics ; Optimization ; Oscillators ; Physics ; Physics and Astronomy ; Superconductivity ; Symmetry ; Theoretical</subject><ispartof>Nature physics, 2020-03, Vol.16 (3), p.351-356</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cde58aa53c1cea064f4c749d7dc1aad22e13e609b47e59728174f131e483778e3</citedby><cites>FETCH-LOGICAL-c316t-cde58aa53c1cea064f4c749d7dc1aad22e13e609b47e59728174f131e483778e3</cites><orcidid>0000-0003-1794-4828 ; 0000-0002-2147-0242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0742-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0742-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Molnar, Ferenc</creatorcontrib><creatorcontrib>Nishikawa, Takashi</creatorcontrib><creatorcontrib>Motter, Adilson E.</creatorcontrib><title>Network experiment demonstrates converse symmetry breaking</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be non-identical in order to exhibit identical behaviour, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably non-identical and that converse symmetry breaking persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behaviour. An experiment with three alternating-current generators demonstrates converse symmetry breaking—a phenomenon whereby the system achieves frequency synchronization when its component systems are tuned asymmetrically.</description><subject>639/766/530/2801</subject><subject>639/766/530/2803</subject><subject>Atomic</subject><subject>Broken symmetry</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Frequency synchronization</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Noise levels</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superconductivity</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRt8tmM7bKjiS6pggdlynUvVliTFdoH8e1wFwcR0NzzvfTyEnAO7BCbMVZRQKk0ZVJRpyelwQCagZUm5NHD422txTE5iXDMmuQIxIddPmD77sCnwa4th1WKXihrbvospuISx8H33gSFiEYe2xRSGYhHQbVbd8pQcNe4t4tlPnZLXu9uX2QOdP98_zm7m1AtQifoaS-NcKTx4dEzJRnotq1rXHpyrOUcQqFi1kBrLSnOTT21AAEojtDYopuRinLsN_fsOY7Lrfhe6vNJykXkF3OhMwUj50McYsLHb_I4LgwVm94rsqMhmRXavyA45w8dMzGy3xPA3-f_QN6aDak0</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Molnar, Ferenc</creator><creator>Nishikawa, Takashi</creator><creator>Motter, Adilson E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1794-4828</orcidid><orcidid>https://orcid.org/0000-0002-2147-0242</orcidid></search><sort><creationdate>20200301</creationdate><title>Network experiment demonstrates converse symmetry breaking</title><author>Molnar, Ferenc ; Nishikawa, Takashi ; Motter, Adilson E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cde58aa53c1cea064f4c749d7dc1aad22e13e609b47e59728174f131e483778e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/530/2801</topic><topic>639/766/530/2803</topic><topic>Atomic</topic><topic>Broken symmetry</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Frequency synchronization</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Noise levels</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superconductivity</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molnar, Ferenc</creatorcontrib><creatorcontrib>Nishikawa, Takashi</creatorcontrib><creatorcontrib>Motter, Adilson E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molnar, Ferenc</au><au>Nishikawa, Takashi</au><au>Motter, Adilson E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network experiment demonstrates converse symmetry breaking</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>351</spage><epage>356</epage><pages>351-356</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Symmetry breaking—the phenomenon in which the symmetry of a system is not inherited by its stable states—underlies pattern formation, superconductivity and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking, a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be non-identical in order to exhibit identical behaviour, such as in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably non-identical and that converse symmetry breaking persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behaviour. An experiment with three alternating-current generators demonstrates converse symmetry breaking—a phenomenon whereby the system achieves frequency synchronization when its component systems are tuned asymmetrically.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0742-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1794-4828</orcidid><orcidid>https://orcid.org/0000-0002-2147-0242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-03, Vol.16 (3), p.351-356
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2372861287
source Nature; SpringerNature Journals
subjects 639/766/530/2801
639/766/530/2803
Atomic
Broken symmetry
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Frequency synchronization
Mathematical and Computational Physics
Molecular
Noise levels
Optical and Plasma Physics
Optimization
Oscillators
Physics
Physics and Astronomy
Superconductivity
Symmetry
Theoretical
title Network experiment demonstrates converse symmetry breaking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20experiment%20demonstrates%20converse%20symmetry%20breaking&rft.jtitle=Nature%20physics&rft.au=Molnar,%20Ferenc&rft.date=2020-03-01&rft.volume=16&rft.issue=3&rft.spage=351&rft.epage=356&rft.pages=351-356&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0742-y&rft_dat=%3Cproquest_cross%3E2372861287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372861287&rft_id=info:pmid/&rfr_iscdi=true