Learning classifier systems: New models, successful applications

Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2002-04, Vol.82 (1), p.23-30
Hauptverfasser: Holmes, John H., Lanzi, Pier Luca, Stolzmann, Wolfgang, Wilson, Stewart W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 23
container_title Information processing letters
container_volume 82
creator Holmes, John H.
Lanzi, Pier Luca
Stolzmann, Wolfgang
Wilson, Stewart W.
description Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems. In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.
doi_str_mv 10.1016/S0020-0190(01)00283-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237285870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019001002836</els_id><sourcerecordid>110383140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CULxpGA1adp8eFFZ_IJFD-o5pOlEsnTbmmmV_e_t7opXLzMMvPeG9yPkmNELRpm4fKU0oyllmp5SdjYeiqdih0yYklkqGNO7ZPIn2ScHiAtKqci5nJCbOdjYhOYjcbVFDD5ATHCFPSzxKnmG72TZVlDjeYKDc4DohzqxXVcHZ_vQNnhI9rytEY5-95S839-9zR7T-cvD0-x2njrO8z71Khe2VHmeUVtmssqcVqKyhfSF09yWlXbSlqWSlFfKg_a8lFoLVRQgQJeOT8nJNreL7ecA2JtFO8RmfGkyLjNVrK1TUmxFLraIEbzpYljauDKMmjUrs2Fl1iDGYTasjBh911vf2BS-RgQGXYDGQRUiuN5Ubfgn4QdbBHDi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237285870</pqid></control><display><type>article</type><title>Learning classifier systems: New models, successful applications</title><source>Elsevier ScienceDirect Journals</source><creator>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</creator><creatorcontrib>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</creatorcontrib><description>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems. In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(01)00283-6</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classification ; Classifier systems ; Complexity ; Data mining ; Generalization ; Internal models ; Robotics ; Robots ; Rules ; Studies</subject><ispartof>Information processing letters, 2002-04, Vol.82 (1), p.23-30</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 15, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</citedby><cites>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019001002836$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Holmes, John H.</creatorcontrib><creatorcontrib>Lanzi, Pier Luca</creatorcontrib><creatorcontrib>Stolzmann, Wolfgang</creatorcontrib><creatorcontrib>Wilson, Stewart W.</creatorcontrib><title>Learning classifier systems: New models, successful applications</title><title>Information processing letters</title><description>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems. In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</description><subject>Classification</subject><subject>Classifier systems</subject><subject>Complexity</subject><subject>Data mining</subject><subject>Generalization</subject><subject>Internal models</subject><subject>Robotics</subject><subject>Robots</subject><subject>Rules</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CULxpGA1adp8eFFZ_IJFD-o5pOlEsnTbmmmV_e_t7opXLzMMvPeG9yPkmNELRpm4fKU0oyllmp5SdjYeiqdih0yYklkqGNO7ZPIn2ScHiAtKqci5nJCbOdjYhOYjcbVFDD5ATHCFPSzxKnmG72TZVlDjeYKDc4DohzqxXVcHZ_vQNnhI9rytEY5-95S839-9zR7T-cvD0-x2njrO8z71Khe2VHmeUVtmssqcVqKyhfSF09yWlXbSlqWSlFfKg_a8lFoLVRQgQJeOT8nJNreL7ecA2JtFO8RmfGkyLjNVrK1TUmxFLraIEbzpYljauDKMmjUrs2Fl1iDGYTasjBh911vf2BS-RgQGXYDGQRUiuN5Ubfgn4QdbBHDi</recordid><startdate>20020415</startdate><enddate>20020415</enddate><creator>Holmes, John H.</creator><creator>Lanzi, Pier Luca</creator><creator>Stolzmann, Wolfgang</creator><creator>Wilson, Stewart W.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020415</creationdate><title>Learning classifier systems: New models, successful applications</title><author>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Classification</topic><topic>Classifier systems</topic><topic>Complexity</topic><topic>Data mining</topic><topic>Generalization</topic><topic>Internal models</topic><topic>Robotics</topic><topic>Robots</topic><topic>Rules</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, John H.</creatorcontrib><creatorcontrib>Lanzi, Pier Luca</creatorcontrib><creatorcontrib>Stolzmann, Wolfgang</creatorcontrib><creatorcontrib>Wilson, Stewart W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, John H.</au><au>Lanzi, Pier Luca</au><au>Stolzmann, Wolfgang</au><au>Wilson, Stewart W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning classifier systems: New models, successful applications</atitle><jtitle>Information processing letters</jtitle><date>2002-04-15</date><risdate>2002</risdate><volume>82</volume><issue>1</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems. In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(01)00283-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2002-04, Vol.82 (1), p.23-30
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237285870
source Elsevier ScienceDirect Journals
subjects Classification
Classifier systems
Complexity
Data mining
Generalization
Internal models
Robotics
Robots
Rules
Studies
title Learning classifier systems: New models, successful applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20classifier%20systems:%20New%20models,%20successful%20applications&rft.jtitle=Information%20processing%20letters&rft.au=Holmes,%20John%20H.&rft.date=2002-04-15&rft.volume=82&rft.issue=1&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(01)00283-6&rft_dat=%3Cproquest_cross%3E110383140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237285870&rft_id=info:pmid/&rft_els_id=S0020019001002836&rfr_iscdi=true