Learning classifier systems: New models, successful applications
Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2002-04, Vol.82 (1), p.23-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Information processing letters |
container_volume | 82 |
creator | Holmes, John H. Lanzi, Pier Luca Stolzmann, Wolfgang Wilson, Stewart W. |
description | Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems.
In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions. |
doi_str_mv | 10.1016/S0020-0190(01)00283-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237285870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019001002836</els_id><sourcerecordid>110383140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CULxpGA1adp8eFFZ_IJFD-o5pOlEsnTbmmmV_e_t7opXLzMMvPeG9yPkmNELRpm4fKU0oyllmp5SdjYeiqdih0yYklkqGNO7ZPIn2ScHiAtKqci5nJCbOdjYhOYjcbVFDD5ATHCFPSzxKnmG72TZVlDjeYKDc4DohzqxXVcHZ_vQNnhI9rytEY5-95S839-9zR7T-cvD0-x2njrO8z71Khe2VHmeUVtmssqcVqKyhfSF09yWlXbSlqWSlFfKg_a8lFoLVRQgQJeOT8nJNreL7ecA2JtFO8RmfGkyLjNVrK1TUmxFLraIEbzpYljauDKMmjUrs2Fl1iDGYTasjBh911vf2BS-RgQGXYDGQRUiuN5Ubfgn4QdbBHDi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237285870</pqid></control><display><type>article</type><title>Learning classifier systems: New models, successful applications</title><source>Elsevier ScienceDirect Journals</source><creator>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</creator><creatorcontrib>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</creatorcontrib><description>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems.
In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(01)00283-6</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classification ; Classifier systems ; Complexity ; Data mining ; Generalization ; Internal models ; Robotics ; Robots ; Rules ; Studies</subject><ispartof>Information processing letters, 2002-04, Vol.82 (1), p.23-30</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 15, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</citedby><cites>FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019001002836$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Holmes, John H.</creatorcontrib><creatorcontrib>Lanzi, Pier Luca</creatorcontrib><creatorcontrib>Stolzmann, Wolfgang</creatorcontrib><creatorcontrib>Wilson, Stewart W.</creatorcontrib><title>Learning classifier systems: New models, successful applications</title><title>Information processing letters</title><description>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems.
In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</description><subject>Classification</subject><subject>Classifier systems</subject><subject>Complexity</subject><subject>Data mining</subject><subject>Generalization</subject><subject>Internal models</subject><subject>Robotics</subject><subject>Robots</subject><subject>Rules</subject><subject>Studies</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CULxpGA1adp8eFFZ_IJFD-o5pOlEsnTbmmmV_e_t7opXLzMMvPeG9yPkmNELRpm4fKU0oyllmp5SdjYeiqdih0yYklkqGNO7ZPIn2ScHiAtKqci5nJCbOdjYhOYjcbVFDD5ATHCFPSzxKnmG72TZVlDjeYKDc4DohzqxXVcHZ_vQNnhI9rytEY5-95S839-9zR7T-cvD0-x2njrO8z71Khe2VHmeUVtmssqcVqKyhfSF09yWlXbSlqWSlFfKg_a8lFoLVRQgQJeOT8nJNreL7ecA2JtFO8RmfGkyLjNVrK1TUmxFLraIEbzpYljauDKMmjUrs2Fl1iDGYTasjBh911vf2BS-RgQGXYDGQRUiuN5Ubfgn4QdbBHDi</recordid><startdate>20020415</startdate><enddate>20020415</enddate><creator>Holmes, John H.</creator><creator>Lanzi, Pier Luca</creator><creator>Stolzmann, Wolfgang</creator><creator>Wilson, Stewart W.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020415</creationdate><title>Learning classifier systems: New models, successful applications</title><author>Holmes, John H. ; Lanzi, Pier Luca ; Stolzmann, Wolfgang ; Wilson, Stewart W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-f846ab84420ab27d2c986da57f5c93abd9c7abb8703d8fe9f3b7996855e6e9bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Classification</topic><topic>Classifier systems</topic><topic>Complexity</topic><topic>Data mining</topic><topic>Generalization</topic><topic>Internal models</topic><topic>Robotics</topic><topic>Robots</topic><topic>Rules</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, John H.</creatorcontrib><creatorcontrib>Lanzi, Pier Luca</creatorcontrib><creatorcontrib>Stolzmann, Wolfgang</creatorcontrib><creatorcontrib>Wilson, Stewart W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, John H.</au><au>Lanzi, Pier Luca</au><au>Stolzmann, Wolfgang</au><au>Wilson, Stewart W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning classifier systems: New models, successful applications</atitle><jtitle>Information processing letters</jtitle><date>2002-04-15</date><risdate>2002</risdate><volume>82</volume><issue>1</issue><spage>23</spage><epage>30</epage><pages>23-30</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Rules are an accepted means of representing knowledge for virtually every domain. Traditional machine learning methods derive rules by exploring sets of examples using statistical or information theoretic techniques. Alternatively, rules can be discovered through methods of Evolutionary Computation such as genetic algorithms and learning classifier systems.
In recent years, new models of learning classifier systems have been developed which have resulted in successful applications in a wide variety of domains (e.g., autonomous robotics, classification, knowledge discovery, modeling). These models have led to a resurgence of this area which for a certain period appeared almost at a dead end. This paper overviews the recent developments in learning classifier systems research, the new models, and the most interesting applications, suggesting some of the most relevant future research directions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(01)00283-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2002-04, Vol.82 (1), p.23-30 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_237285870 |
source | Elsevier ScienceDirect Journals |
subjects | Classification Classifier systems Complexity Data mining Generalization Internal models Robotics Robots Rules Studies |
title | Learning classifier systems: New models, successful applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20classifier%20systems:%20New%20models,%20successful%20applications&rft.jtitle=Information%20processing%20letters&rft.au=Holmes,%20John%20H.&rft.date=2002-04-15&rft.volume=82&rft.issue=1&rft.spage=23&rft.epage=30&rft.pages=23-30&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(01)00283-6&rft_dat=%3Cproquest_cross%3E110383140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237285870&rft_id=info:pmid/&rft_els_id=S0020019001002836&rfr_iscdi=true |