New bounds on a hypercube coloring problem

In studying the scalability of optical networks, one problem which arises involves coloring the vertices of the n-cube with as few colors as possible such that any two vertices whose Hamming distance is at most k are colored differently. Determining the exact value of χ k ̄ (n) , the minimum number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2002-12, Vol.84 (5), p.265-269
Hauptverfasser: Ngo, Hung Quang, Du, Ding-Zhu, Graham, Ronald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 5
container_start_page 265
container_title Information processing letters
container_volume 84
creator Ngo, Hung Quang
Du, Ding-Zhu
Graham, Ronald L.
description In studying the scalability of optical networks, one problem which arises involves coloring the vertices of the n-cube with as few colors as possible such that any two vertices whose Hamming distance is at most k are colored differently. Determining the exact value of χ k ̄ (n) , the minimum number of colors needed, appears to be a difficult problem. In this note, we improve the known lower and upper bounds of χ k ̄ (n) and indicate the connection of this coloring problem to linear codes.
doi_str_mv 10.1016/S0020-0190(02)00301-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237281835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019002003010</els_id><sourcerecordid>230694261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4b5fc06099be47304170b7b80eb0da3364a9dd5d49e2accfab11a475d92a5b263</originalsourceid><addsrcrecordid>eNqFkE1LAzEYhIMoWKs_QVgEQYXV902ym81JpPgFRQ_qOeRrdUu7qUlX6b93-4EePc3lmRlmCDlGuETA8uoFgEIOKOEM6DkAA8xhhwywEjQvEeUuGfwi--QgpQkAlJyJAbl48t-ZCV3rUhbaTGcfy7mPtjM-s2EaYtO-Z_MYzNTPDslerafJH211SN7ubl9HD_n4-f5xdDPOLUdc5NwUtYUSpDSeCwYcBRhhKvAGnGas5Fo6VzguPdXW1togai4KJ6kuDC3ZkJxscvvez86nhZqELrZ9paJM0AorVvRQsYFsDClFX6t5bGY6LhWCWr2i1q-o1WQFVK1fUdD7TrfhOlk9raNubZP-zEyWlShEz11vON8v_Wp8VMk2vrXeNdHbhXKh-afpB0twdC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237281835</pqid></control><display><type>article</type><title>New bounds on a hypercube coloring problem</title><source>Elsevier ScienceDirect Journals</source><creator>Ngo, Hung Quang ; Du, Ding-Zhu ; Graham, Ronald L.</creator><creatorcontrib>Ngo, Hung Quang ; Du, Ding-Zhu ; Graham, Ronald L.</creatorcontrib><description>In studying the scalability of optical networks, one problem which arises involves coloring the vertices of the n-cube with as few colors as possible such that any two vertices whose Hamming distance is at most k are colored differently. Determining the exact value of χ k ̄ (n) , the minimum number of colors needed, appears to be a difficult problem. In this note, we improve the known lower and upper bounds of χ k ̄ (n) and indicate the connection of this coloring problem to linear codes.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(02)00301-0</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-cube ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Codes ; Coloring ; Combinatorial problems ; Computer science; control theory; systems ; Exact sciences and technology ; Fiber optics ; Information retrieval. Graph ; Linear programming ; Mathematical models ; Scalability ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2002-12, Vol.84 (5), p.265-269</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Dec 16, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4b5fc06099be47304170b7b80eb0da3364a9dd5d49e2accfab11a475d92a5b263</citedby><cites>FETCH-LOGICAL-c411t-4b5fc06099be47304170b7b80eb0da3364a9dd5d49e2accfab11a475d92a5b263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019002003010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13968757$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngo, Hung Quang</creatorcontrib><creatorcontrib>Du, Ding-Zhu</creatorcontrib><creatorcontrib>Graham, Ronald L.</creatorcontrib><title>New bounds on a hypercube coloring problem</title><title>Information processing letters</title><description>In studying the scalability of optical networks, one problem which arises involves coloring the vertices of the n-cube with as few colors as possible such that any two vertices whose Hamming distance is at most k are colored differently. Determining the exact value of χ k ̄ (n) , the minimum number of colors needed, appears to be a difficult problem. In this note, we improve the known lower and upper bounds of χ k ̄ (n) and indicate the connection of this coloring problem to linear codes.</description><subject>[formula omitted]-cube</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Codes</subject><subject>Coloring</subject><subject>Combinatorial problems</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fiber optics</subject><subject>Information retrieval. Graph</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Scalability</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEYhIMoWKs_QVgEQYXV902ym81JpPgFRQ_qOeRrdUu7qUlX6b93-4EePc3lmRlmCDlGuETA8uoFgEIOKOEM6DkAA8xhhwywEjQvEeUuGfwi--QgpQkAlJyJAbl48t-ZCV3rUhbaTGcfy7mPtjM-s2EaYtO-Z_MYzNTPDslerafJH211SN7ubl9HD_n4-f5xdDPOLUdc5NwUtYUSpDSeCwYcBRhhKvAGnGas5Fo6VzguPdXW1togai4KJ6kuDC3ZkJxscvvez86nhZqELrZ9paJM0AorVvRQsYFsDClFX6t5bGY6LhWCWr2i1q-o1WQFVK1fUdD7TrfhOlk9raNubZP-zEyWlShEz11vON8v_Wp8VMk2vrXeNdHbhXKh-afpB0twdC0</recordid><startdate>20021216</startdate><enddate>20021216</enddate><creator>Ngo, Hung Quang</creator><creator>Du, Ding-Zhu</creator><creator>Graham, Ronald L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021216</creationdate><title>New bounds on a hypercube coloring problem</title><author>Ngo, Hung Quang ; Du, Ding-Zhu ; Graham, Ronald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4b5fc06099be47304170b7b80eb0da3364a9dd5d49e2accfab11a475d92a5b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>[formula omitted]-cube</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Codes</topic><topic>Coloring</topic><topic>Combinatorial problems</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fiber optics</topic><topic>Information retrieval. Graph</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Scalability</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngo, Hung Quang</creatorcontrib><creatorcontrib>Du, Ding-Zhu</creatorcontrib><creatorcontrib>Graham, Ronald L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngo, Hung Quang</au><au>Du, Ding-Zhu</au><au>Graham, Ronald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New bounds on a hypercube coloring problem</atitle><jtitle>Information processing letters</jtitle><date>2002-12-16</date><risdate>2002</risdate><volume>84</volume><issue>5</issue><spage>265</spage><epage>269</epage><pages>265-269</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>In studying the scalability of optical networks, one problem which arises involves coloring the vertices of the n-cube with as few colors as possible such that any two vertices whose Hamming distance is at most k are colored differently. Determining the exact value of χ k ̄ (n) , the minimum number of colors needed, appears to be a difficult problem. In this note, we improve the known lower and upper bounds of χ k ̄ (n) and indicate the connection of this coloring problem to linear codes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(02)00301-0</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2002-12, Vol.84 (5), p.265-269
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237281835
source Elsevier ScienceDirect Journals
subjects [formula omitted]-cube
Algorithmics. Computability. Computer arithmetics
Applied sciences
Codes
Coloring
Combinatorial problems
Computer science
control theory
systems
Exact sciences and technology
Fiber optics
Information retrieval. Graph
Linear programming
Mathematical models
Scalability
Studies
Theoretical computing
title New bounds on a hypercube coloring problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20bounds%20on%20a%20hypercube%20coloring%20problem&rft.jtitle=Information%20processing%20letters&rft.au=Ngo,%20Hung%20Quang&rft.date=2002-12-16&rft.volume=84&rft.issue=5&rft.spage=265&rft.epage=269&rft.pages=265-269&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(02)00301-0&rft_dat=%3Cproquest_cross%3E230694261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237281835&rft_id=info:pmid/&rft_els_id=S0020019002003010&rfr_iscdi=true