The minimum labeling spanning trees
One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1997-09, Vol.63 (5), p.277-282 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 5 |
container_start_page | 277 |
container_title | Information processing letters |
container_volume | 63 |
creator | Chang, Ruay-Shiung Shing-Jiuan, Leu |
description | One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the
A
∗-
algorithm
, are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient. |
doi_str_mv | 10.1016/S0020-0190(97)00127-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237279327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019097001270</els_id><sourcerecordid>21031769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5Aq4ACHwPoROz4hVPGSKnGgnC3H2YCrxCl2isS_J32oV067h29mNEPIOYVbClTevQMwyIBquNbqBoAylcEBGdFCsUxSqg_JaI8ck5OUFgAgBVcjcjn_wknrg29X7aSxJTY-fE7S0oawfvqImE7JUW2bhGe7OyYfT4_z6Us2e3t-nT7MMscl7zNd2RyFslIq0AUK6WguC6Ci1EI7Jm1ZKu2U0rkQVa2tLXWJDnJOWaly6viYXGx9l7H7XmHqzaJbxTBEGsYVU5ozNUD5FnKxSylibZbRtzb-GgpmPYfZzGHWXY1WZjOHgUF3tTO3ydmmjjY4n_ZiVggQuhiw-y2GQ9Efj9Ek5zE4rHxE15uq8_8E_QHt5XEv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237279327</pqid></control><display><type>article</type><title>The minimum labeling spanning trees</title><source>Elsevier ScienceDirect Journals</source><creator>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</creator><creatorcontrib>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</creatorcontrib><description>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the
A
∗-
algorithm
, are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(97)00127-0</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Analysis of algorithms ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Information processing ; Information retrieval. Graph ; Labeling ; Mathematical analysis ; NP-complete ; Spanning trees ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 1997-09, Vol.63 (5), p.277-282</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 15, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</citedby><cites>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019097001270$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2840498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Ruay-Shiung</creatorcontrib><creatorcontrib>Shing-Jiuan, Leu</creatorcontrib><title>The minimum labeling spanning trees</title><title>Information processing letters</title><description>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the
A
∗-
algorithm
, are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Analysis of algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Information retrieval. Graph</subject><subject>Labeling</subject><subject>Mathematical analysis</subject><subject>NP-complete</subject><subject>Spanning trees</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5Aq4ACHwPoROz4hVPGSKnGgnC3H2YCrxCl2isS_J32oV067h29mNEPIOYVbClTevQMwyIBquNbqBoAylcEBGdFCsUxSqg_JaI8ck5OUFgAgBVcjcjn_wknrg29X7aSxJTY-fE7S0oawfvqImE7JUW2bhGe7OyYfT4_z6Us2e3t-nT7MMscl7zNd2RyFslIq0AUK6WguC6Ci1EI7Jm1ZKu2U0rkQVa2tLXWJDnJOWaly6viYXGx9l7H7XmHqzaJbxTBEGsYVU5ozNUD5FnKxSylibZbRtzb-GgpmPYfZzGHWXY1WZjOHgUF3tTO3ydmmjjY4n_ZiVggQuhiw-y2GQ9Efj9Ek5zE4rHxE15uq8_8E_QHt5XEv</recordid><startdate>19970915</startdate><enddate>19970915</enddate><creator>Chang, Ruay-Shiung</creator><creator>Shing-Jiuan, Leu</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970915</creationdate><title>The minimum labeling spanning trees</title><author>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Analysis of algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Information retrieval. Graph</topic><topic>Labeling</topic><topic>Mathematical analysis</topic><topic>NP-complete</topic><topic>Spanning trees</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ruay-Shiung</creatorcontrib><creatorcontrib>Shing-Jiuan, Leu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ruay-Shiung</au><au>Shing-Jiuan, Leu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The minimum labeling spanning trees</atitle><jtitle>Information processing letters</jtitle><date>1997-09-15</date><risdate>1997</risdate><volume>63</volume><issue>5</issue><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the
A
∗-
algorithm
, are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(97)00127-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 1997-09, Vol.63 (5), p.277-282 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_237279327 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Analysis of algorithms Applied sciences Computer science control theory systems Exact sciences and technology Graph theory Graphs Information processing Information retrieval. Graph Labeling Mathematical analysis NP-complete Spanning trees Studies Theoretical computing |
title | The minimum labeling spanning trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20minimum%20labeling%20spanning%20trees&rft.jtitle=Information%20processing%20letters&rft.au=Chang,%20Ruay-Shiung&rft.date=1997-09-15&rft.volume=63&rft.issue=5&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(97)00127-0&rft_dat=%3Cproquest_cross%3E21031769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237279327&rft_id=info:pmid/&rft_els_id=S0020019097001270&rfr_iscdi=true |