The minimum labeling spanning trees

One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1997-09, Vol.63 (5), p.277-282
Hauptverfasser: Chang, Ruay-Shiung, Shing-Jiuan, Leu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 5
container_start_page 277
container_title Information processing letters
container_volume 63
creator Chang, Ruay-Shiung
Shing-Jiuan, Leu
description One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the A ∗- algorithm , are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.
doi_str_mv 10.1016/S0020-0190(97)00127-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237279327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019097001270</els_id><sourcerecordid>21031769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5Aq4ACHwPoROz4hVPGSKnGgnC3H2YCrxCl2isS_J32oV067h29mNEPIOYVbClTevQMwyIBquNbqBoAylcEBGdFCsUxSqg_JaI8ck5OUFgAgBVcjcjn_wknrg29X7aSxJTY-fE7S0oawfvqImE7JUW2bhGe7OyYfT4_z6Us2e3t-nT7MMscl7zNd2RyFslIq0AUK6WguC6Ci1EI7Jm1ZKu2U0rkQVa2tLXWJDnJOWaly6viYXGx9l7H7XmHqzaJbxTBEGsYVU5ozNUD5FnKxSylibZbRtzb-GgpmPYfZzGHWXY1WZjOHgUF3tTO3ydmmjjY4n_ZiVggQuhiw-y2GQ9Efj9Ek5zE4rHxE15uq8_8E_QHt5XEv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237279327</pqid></control><display><type>article</type><title>The minimum labeling spanning trees</title><source>Elsevier ScienceDirect Journals</source><creator>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</creator><creatorcontrib>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</creatorcontrib><description>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the A ∗- algorithm , are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(97)00127-0</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Analysis of algorithms ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Information processing ; Information retrieval. Graph ; Labeling ; Mathematical analysis ; NP-complete ; Spanning trees ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 1997-09, Vol.63 (5), p.277-282</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 15, 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</citedby><cites>FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019097001270$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2840498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Ruay-Shiung</creatorcontrib><creatorcontrib>Shing-Jiuan, Leu</creatorcontrib><title>The minimum labeling spanning trees</title><title>Information processing letters</title><description>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the A ∗- algorithm , are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Analysis of algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Information retrieval. Graph</subject><subject>Labeling</subject><subject>Mathematical analysis</subject><subject>NP-complete</subject><subject>Spanning trees</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5Aq4ACHwPoROz4hVPGSKnGgnC3H2YCrxCl2isS_J32oV067h29mNEPIOYVbClTevQMwyIBquNbqBoAylcEBGdFCsUxSqg_JaI8ck5OUFgAgBVcjcjn_wknrg29X7aSxJTY-fE7S0oawfvqImE7JUW2bhGe7OyYfT4_z6Us2e3t-nT7MMscl7zNd2RyFslIq0AUK6WguC6Ci1EI7Jm1ZKu2U0rkQVa2tLXWJDnJOWaly6viYXGx9l7H7XmHqzaJbxTBEGsYVU5ozNUD5FnKxSylibZbRtzb-GgpmPYfZzGHWXY1WZjOHgUF3tTO3ydmmjjY4n_ZiVggQuhiw-y2GQ9Efj9Ek5zE4rHxE15uq8_8E_QHt5XEv</recordid><startdate>19970915</startdate><enddate>19970915</enddate><creator>Chang, Ruay-Shiung</creator><creator>Shing-Jiuan, Leu</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970915</creationdate><title>The minimum labeling spanning trees</title><author>Chang, Ruay-Shiung ; Shing-Jiuan, Leu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9da5e47a667098e46c1568014b949c26abb79c779544df9aab9bec05312b751c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Analysis of algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Information retrieval. Graph</topic><topic>Labeling</topic><topic>Mathematical analysis</topic><topic>NP-complete</topic><topic>Spanning trees</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ruay-Shiung</creatorcontrib><creatorcontrib>Shing-Jiuan, Leu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ruay-Shiung</au><au>Shing-Jiuan, Leu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The minimum labeling spanning trees</atitle><jtitle>Information processing letters</jtitle><date>1997-09-15</date><risdate>1997</risdate><volume>63</volume><issue>5</issue><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>One of the fundamental problems in graph theory is to compute a minimum weight spanning tree. In this paper, a variant of spanning trees, called the minimum labeling spanning tree, is studied. The purpose is to find a spanning tree that tries to use edges that are as similar as possible. Giving each edge a label, the minimum labeling spanning tree is to find a spanning tree whose edge set consists of the smallest possible number of labels. This problem is shown to be NP-complete even for complete graphs. Two heuristic algorithms and an exact algorithm, based on the A ∗- algorithm , are presented. According to the experimental results, one of the heuristic algorithms is very effective and the exact algorithm is very efficient.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(97)00127-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1997-09, Vol.63 (5), p.277-282
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237279327
source Elsevier ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Analysis of algorithms
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Graphs
Information processing
Information retrieval. Graph
Labeling
Mathematical analysis
NP-complete
Spanning trees
Studies
Theoretical computing
title The minimum labeling spanning trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20minimum%20labeling%20spanning%20trees&rft.jtitle=Information%20processing%20letters&rft.au=Chang,%20Ruay-Shiung&rft.date=1997-09-15&rft.volume=63&rft.issue=5&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(97)00127-0&rft_dat=%3Cproquest_cross%3E21031769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237279327&rft_id=info:pmid/&rft_els_id=S0020019097001270&rfr_iscdi=true