Rectilinear short path queries among rectangular obstacles

Given a set of n disjoint rectangular obstacles in the plane whose edges are either vertical or horizontal, we consider the problem of processing rectilinear approximate shortest path queries between pairs of arbitrary query points. Our goal is to answer each approximate shortest path query quickly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1996-03, Vol.57 (6), p.313-319
Hauptverfasser: Chen, Danny A., Klenk, Kevin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue 6
container_start_page 313
container_title Information processing letters
container_volume 57
creator Chen, Danny A.
Klenk, Kevin S.
description Given a set of n disjoint rectangular obstacles in the plane whose edges are either vertical or horizontal, we consider the problem of processing rectilinear approximate shortest path queries between pairs of arbitrary query points. Our goal is to answer each approximate shortest path query quickly by constructing a data structure that captures path information in the obstacle-scattered plane. We present a data structure for rectilinear approximate shortest path queries that requires O( n log 2 n) time to construct and O( n log n) space. This data structure enables us to report the length of an approximate shortest path between two arbitrary query points in O( log n) time and the actual path in O( log n + L) time, where L is the number of edges of the output path. If the query points are both obstacle vertices then the length and an actual path can be reported in O(1) and O( L) time respectively. The approximation factor for the approximate shortest paths that we compute is 3. The previously best known solution to this problem requires O( n log 3 n) time and O( n log 2 n) space to build a data structure, which supports length and actual path queries respectively in O( log 2 n) and O( log 2 n + L) time (regardless of the types of query points); the approximation factor for paths between arbitrary query points is 7.
doi_str_mv 10.1016/0020-0190(96)00020-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237277136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020019096000208</els_id><sourcerecordid>9623206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bea639e545f0cb1f7b8035ce0253ed69d73988773e9d05599e3b9e1c88864daf3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_Aw9BPOghOptN9sODUIpfUBBEz8tmM2m3pEndTQX_ezdt6dHT8OD33sw8Qi4p3FGg_B4ggxSoghvFb2Gr5BEZUSmylFOqjsnogJySsxCWEeI5EyPy8IG2d41r0fgkLDrfJ2vTL5LvDXqHITGrrp0nPkKmnW-aCHVl6I1tMJyTk9o0AS_2c0y-np8-p6_p7P3lbTqZpZZx6NMSDWcKi7yowZa0FqUEVliErGBYcVUJpqQUgqGqoCiUQlYqpFZKyfPK1GxMrna5a9_Fs0Kvl93Gt3GlzpjIhKCMRyjfQdZ3IXis9dq7lfG_moIeStJDA3poQKtBDEpG2_U-2wRrmtqb1rpw8DLglG_TH3cYxj9_HHodrMPWYuWGanTVuf_3_AFLRHmZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237277136</pqid></control><display><type>article</type><title>Rectilinear short path queries among rectangular obstacles</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Danny A. ; Klenk, Kevin S.</creator><creatorcontrib>Chen, Danny A. ; Klenk, Kevin S.</creatorcontrib><description>Given a set of n disjoint rectangular obstacles in the plane whose edges are either vertical or horizontal, we consider the problem of processing rectilinear approximate shortest path queries between pairs of arbitrary query points. Our goal is to answer each approximate shortest path query quickly by constructing a data structure that captures path information in the obstacle-scattered plane. We present a data structure for rectilinear approximate shortest path queries that requires O( n log 2 n) time to construct and O( n log n) space. This data structure enables us to report the length of an approximate shortest path between two arbitrary query points in O( log n) time and the actual path in O( log n + L) time, where L is the number of edges of the output path. If the query points are both obstacle vertices then the length and an actual path can be reported in O(1) and O( L) time respectively. The approximation factor for the approximate shortest paths that we compute is 3. The previously best known solution to this problem requires O( n log 3 n) time and O( n log 2 n) space to build a data structure, which supports length and actual path queries respectively in O( log 2 n) and O( log 2 n + L) time (regardless of the types of query points); the approximation factor for paths between arbitrary query points is 7.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/0020-0190(96)00020-8</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Analysis of algorithms ; Applied sciences ; Artificial intelligence ; Computational geometry ; Computer science ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Data structures ; Design of algorithms ; Exact sciences and technology ; Graphs ; Mathematical models ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Queries ; Shortest path ; Software ; Studies ; Systems design ; Theoretical computing</subject><ispartof>Information processing letters, 1996-03, Vol.57 (6), p.313-319</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 25, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bea639e545f0cb1f7b8035ce0253ed69d73988773e9d05599e3b9e1c88864daf3</citedby><cites>FETCH-LOGICAL-c360t-bea639e545f0cb1f7b8035ce0253ed69d73988773e9d05599e3b9e1c88864daf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0020019096000208$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3061636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Danny A.</creatorcontrib><creatorcontrib>Klenk, Kevin S.</creatorcontrib><title>Rectilinear short path queries among rectangular obstacles</title><title>Information processing letters</title><description>Given a set of n disjoint rectangular obstacles in the plane whose edges are either vertical or horizontal, we consider the problem of processing rectilinear approximate shortest path queries between pairs of arbitrary query points. Our goal is to answer each approximate shortest path query quickly by constructing a data structure that captures path information in the obstacle-scattered plane. We present a data structure for rectilinear approximate shortest path queries that requires O( n log 2 n) time to construct and O( n log n) space. This data structure enables us to report the length of an approximate shortest path between two arbitrary query points in O( log n) time and the actual path in O( log n + L) time, where L is the number of edges of the output path. If the query points are both obstacle vertices then the length and an actual path can be reported in O(1) and O( L) time respectively. The approximation factor for the approximate shortest paths that we compute is 3. The previously best known solution to this problem requires O( n log 3 n) time and O( n log 2 n) space to build a data structure, which supports length and actual path queries respectively in O( log 2 n) and O( log 2 n + L) time (regardless of the types of query points); the approximation factor for paths between arbitrary query points is 7.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Analysis of algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational geometry</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Data structures</subject><subject>Design of algorithms</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Queries</subject><subject>Shortest path</subject><subject>Software</subject><subject>Studies</subject><subject>Systems design</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFb_Aw9BPOghOptN9sODUIpfUBBEz8tmM2m3pEndTQX_ezdt6dHT8OD33sw8Qi4p3FGg_B4ggxSoghvFb2Gr5BEZUSmylFOqjsnogJySsxCWEeI5EyPy8IG2d41r0fgkLDrfJ2vTL5LvDXqHITGrrp0nPkKmnW-aCHVl6I1tMJyTk9o0AS_2c0y-np8-p6_p7P3lbTqZpZZx6NMSDWcKi7yowZa0FqUEVliErGBYcVUJpqQUgqGqoCiUQlYqpFZKyfPK1GxMrna5a9_Fs0Kvl93Gt3GlzpjIhKCMRyjfQdZ3IXis9dq7lfG_moIeStJDA3poQKtBDEpG2_U-2wRrmtqb1rpw8DLglG_TH3cYxj9_HHodrMPWYuWGanTVuf_3_AFLRHmZ</recordid><startdate>19960325</startdate><enddate>19960325</enddate><creator>Chen, Danny A.</creator><creator>Klenk, Kevin S.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960325</creationdate><title>Rectilinear short path queries among rectangular obstacles</title><author>Chen, Danny A. ; Klenk, Kevin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bea639e545f0cb1f7b8035ce0253ed69d73988773e9d05599e3b9e1c88864daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Analysis of algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational geometry</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Data structures</topic><topic>Design of algorithms</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Queries</topic><topic>Shortest path</topic><topic>Software</topic><topic>Studies</topic><topic>Systems design</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Danny A.</creatorcontrib><creatorcontrib>Klenk, Kevin S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Danny A.</au><au>Klenk, Kevin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rectilinear short path queries among rectangular obstacles</atitle><jtitle>Information processing letters</jtitle><date>1996-03-25</date><risdate>1996</risdate><volume>57</volume><issue>6</issue><spage>313</spage><epage>319</epage><pages>313-319</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Given a set of n disjoint rectangular obstacles in the plane whose edges are either vertical or horizontal, we consider the problem of processing rectilinear approximate shortest path queries between pairs of arbitrary query points. Our goal is to answer each approximate shortest path query quickly by constructing a data structure that captures path information in the obstacle-scattered plane. We present a data structure for rectilinear approximate shortest path queries that requires O( n log 2 n) time to construct and O( n log n) space. This data structure enables us to report the length of an approximate shortest path between two arbitrary query points in O( log n) time and the actual path in O( log n + L) time, where L is the number of edges of the output path. If the query points are both obstacle vertices then the length and an actual path can be reported in O(1) and O( L) time respectively. The approximation factor for the approximate shortest paths that we compute is 3. The previously best known solution to this problem requires O( n log 3 n) time and O( n log 2 n) space to build a data structure, which supports length and actual path queries respectively in O( log 2 n) and O( log 2 n + L) time (regardless of the types of query points); the approximation factor for paths between arbitrary query points is 7.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0020-0190(96)00020-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1996-03, Vol.57 (6), p.313-319
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237277136
source Elsevier ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Analysis of algorithms
Applied sciences
Artificial intelligence
Computational geometry
Computer science
Computer science
control theory
systems
Data processing. List processing. Character string processing
Data structures
Design of algorithms
Exact sciences and technology
Graphs
Mathematical models
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Queries
Shortest path
Software
Studies
Systems design
Theoretical computing
title Rectilinear short path queries among rectangular obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rectilinear%20short%20path%20queries%20among%20rectangular%20obstacles&rft.jtitle=Information%20processing%20letters&rft.au=Chen,%20Danny%20A.&rft.date=1996-03-25&rft.volume=57&rft.issue=6&rft.spage=313&rft.epage=319&rft.pages=313-319&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/0020-0190(96)00020-8&rft_dat=%3Cproquest_cross%3E9623206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237277136&rft_id=info:pmid/&rft_els_id=0020019096000208&rfr_iscdi=true