Minimizing center key storage in hybrid one-way function based group key management with communication constraints

We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2005-02, Vol.93 (4), p.191-198
Hauptverfasser: Li, Mingyan, Poovendran, Radha, McGrew, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 4
container_start_page 191
container_title Information processing letters
container_volume 93
creator Li, Mingyan
Poovendran, Radha
McGrew, David A.
description We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size M. Due to the monotonicity of the center storage with respect to M, we convert the constrained optimization into a fixed point equation and derive the optimal M * explicitly. We show that the asymptotic value of the optimal M * , given as μ + a − 1 log e a log e μ with μ = O ( log N ) and a being the degree of a key tree, leads to the minimal storage as O ( N log N ) , when the update communication constraint is given as O ( log N ) . We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.
doi_str_mv 10.1016/j.ipl.2004.10.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237275763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019004003230</els_id><sourcerecordid>783600251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS1EJULLB-BmIXHcMPZ6_4kTqiggFXGhZ8uZnU0nZO1ge6nST4_TVOLGaTSj33tP84R4q2CtQLUfdms-7NcawJR9DUq_ECvVd7pqlRpeihWAhgrUAK_E65R2ANCauluJ-J09z_zIfiuRfKYof9FRphyi25JkL--Pm8ijDJ6qB3eU0-Ixc_By4xKNchvDcniSzM4XxVw85APne4lhnhfP6J5oDD7l6NjndCUuJrdP9OZ5Xoq7m88_r79Wtz--fLv-dFth3ZhcocHJNZsGh74exx571N3QNgANTajRGdc7BV1jCJFaPUBTq7Zra5x6o0c11pfi3dn3EMPvhVK2u7BEXyKtrjvdNQUukDpDGENKkSZ7iDy7eLQK7KlZu7OlWXtq9nQqzRbN-2djl9Dtp-g8cvonbI3WUJvCfTxzVL78wxRtQiaPNHIkzHYM_J-Uv7TKkCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237275763</pqid></control><display><type>article</type><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</creator><creatorcontrib>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</creatorcontrib><description>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size M. Due to the monotonicity of the center storage with respect to M, we convert the constrained optimization into a fixed point equation and derive the optimal M * explicitly. We show that the asymptotic value of the optimal M * , given as μ + a − 1 log e a log e μ with μ = O ( log N ) and a being the degree of a key tree, leads to the minimal storage as O ( N log N ) , when the update communication constraint is given as O ( log N ) . We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2004.10.012</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Calculus of variations and optimal control ; Communication ; Communications systems ; Computer science; control theory; systems ; Cryptography ; Exact sciences and technology ; Group rekey ; Information storage ; Information, signal and communications theory ; Key management/distribution ; Mathematical analysis ; Mathematics ; Number theory ; One-way function ; Optimization ; Sciences and techniques of general use ; Secure multicast/broadcast ; Signal and communications theory ; Studies ; Telecommunications and information theory ; Theoretical computing</subject><ispartof>Information processing letters, 2005-02, Vol.93 (4), p.191-198</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 28, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</citedby><cites>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2004.10.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16422034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mingyan</creatorcontrib><creatorcontrib>Poovendran, Radha</creatorcontrib><creatorcontrib>McGrew, David A.</creatorcontrib><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><title>Information processing letters</title><description>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size M. Due to the monotonicity of the center storage with respect to M, we convert the constrained optimization into a fixed point equation and derive the optimal M * explicitly. We show that the asymptotic value of the optimal M * , given as μ + a − 1 log e a log e μ with μ = O ( log N ) and a being the degree of a key tree, leads to the minimal storage as O ( N log N ) , when the update communication constraint is given as O ( log N ) . We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Group rekey</subject><subject>Information storage</subject><subject>Information, signal and communications theory</subject><subject>Key management/distribution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>One-way function</subject><subject>Optimization</subject><subject>Sciences and techniques of general use</subject><subject>Secure multicast/broadcast</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9vEzEQxS1EJULLB-BmIXHcMPZ6_4kTqiggFXGhZ8uZnU0nZO1ge6nST4_TVOLGaTSj33tP84R4q2CtQLUfdms-7NcawJR9DUq_ECvVd7pqlRpeihWAhgrUAK_E65R2ANCauluJ-J09z_zIfiuRfKYof9FRphyi25JkL--Pm8ijDJ6qB3eU0-Ixc_By4xKNchvDcniSzM4XxVw85APne4lhnhfP6J5oDD7l6NjndCUuJrdP9OZ5Xoq7m88_r79Wtz--fLv-dFth3ZhcocHJNZsGh74exx571N3QNgANTajRGdc7BV1jCJFaPUBTq7Zra5x6o0c11pfi3dn3EMPvhVK2u7BEXyKtrjvdNQUukDpDGENKkSZ7iDy7eLQK7KlZu7OlWXtq9nQqzRbN-2djl9Dtp-g8cvonbI3WUJvCfTxzVL78wxRtQiaPNHIkzHYM_J-Uv7TKkCo</recordid><startdate>20050228</startdate><enddate>20050228</enddate><creator>Li, Mingyan</creator><creator>Poovendran, Radha</creator><creator>McGrew, David A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050228</creationdate><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><author>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Group rekey</topic><topic>Information storage</topic><topic>Information, signal and communications theory</topic><topic>Key management/distribution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>One-way function</topic><topic>Optimization</topic><topic>Sciences and techniques of general use</topic><topic>Secure multicast/broadcast</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingyan</creatorcontrib><creatorcontrib>Poovendran, Radha</creatorcontrib><creatorcontrib>McGrew, David A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingyan</au><au>Poovendran, Radha</au><au>McGrew, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</atitle><jtitle>Information processing letters</jtitle><date>2005-02-28</date><risdate>2005</risdate><volume>93</volume><issue>4</issue><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size M. Due to the monotonicity of the center storage with respect to M, we convert the constrained optimization into a fixed point equation and derive the optimal M * explicitly. We show that the asymptotic value of the optimal M * , given as μ + a − 1 log e a log e μ with μ = O ( log N ) and a being the degree of a key tree, leads to the minimal storage as O ( N log N ) , when the update communication constraint is given as O ( log N ) . We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2004.10.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2005-02, Vol.93 (4), p.191-198
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237275763
source Elsevier ScienceDirect Journals
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Calculus of variations and optimal control
Communication
Communications systems
Computer science
control theory
systems
Cryptography
Exact sciences and technology
Group rekey
Information storage
Information, signal and communications theory
Key management/distribution
Mathematical analysis
Mathematics
Number theory
One-way function
Optimization
Sciences and techniques of general use
Secure multicast/broadcast
Signal and communications theory
Studies
Telecommunications and information theory
Theoretical computing
title Minimizing center key storage in hybrid one-way function based group key management with communication constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20center%20key%20storage%20in%20hybrid%20one-way%20function%20based%20group%20key%20management%20with%20communication%20constraints&rft.jtitle=Information%20processing%20letters&rft.au=Li,%20Mingyan&rft.date=2005-02-28&rft.volume=93&rft.issue=4&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2004.10.012&rft_dat=%3Cproquest_cross%3E783600251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237275763&rft_id=info:pmid/&rft_els_id=S0020019004003230&rfr_iscdi=true