Minimizing center key storage in hybrid one-way function based group key management with communication constraints
We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of N members into clusters of M members an...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2005-02, Vol.93 (4), p.191-198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 4 |
container_start_page | 191 |
container_title | Information processing letters |
container_volume | 93 |
creator | Li, Mingyan Poovendran, Radha McGrew, David A. |
description | We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of
N members into clusters of
M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size
M. Due to the monotonicity of the center storage with respect to
M, we convert the constrained optimization into a fixed point equation and derive the optimal
M
*
explicitly. We show that the asymptotic value of the optimal
M
*
, given as
μ
+
a
−
1
log
e
a
log
e
μ
with
μ
=
O
(
log
N
)
and
a being the degree of a key tree, leads to the minimal storage as
O
(
N
log
N
)
, when the update communication constraint is given as
O
(
log
N
)
. We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint. |
doi_str_mv | 10.1016/j.ipl.2004.10.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237275763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019004003230</els_id><sourcerecordid>783600251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS1EJULLB-BmIXHcMPZ6_4kTqiggFXGhZ8uZnU0nZO1ge6nST4_TVOLGaTSj33tP84R4q2CtQLUfdms-7NcawJR9DUq_ECvVd7pqlRpeihWAhgrUAK_E65R2ANCauluJ-J09z_zIfiuRfKYof9FRphyi25JkL--Pm8ijDJ6qB3eU0-Ixc_By4xKNchvDcniSzM4XxVw85APne4lhnhfP6J5oDD7l6NjndCUuJrdP9OZ5Xoq7m88_r79Wtz--fLv-dFth3ZhcocHJNZsGh74exx571N3QNgANTajRGdc7BV1jCJFaPUBTq7Zra5x6o0c11pfi3dn3EMPvhVK2u7BEXyKtrjvdNQUukDpDGENKkSZ7iDy7eLQK7KlZu7OlWXtq9nQqzRbN-2djl9Dtp-g8cvonbI3WUJvCfTxzVL78wxRtQiaPNHIkzHYM_J-Uv7TKkCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237275763</pqid></control><display><type>article</type><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</creator><creatorcontrib>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</creatorcontrib><description>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of
N members into clusters of
M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size
M. Due to the monotonicity of the center storage with respect to
M, we convert the constrained optimization into a fixed point equation and derive the optimal
M
*
explicitly. We show that the asymptotic value of the optimal
M
*
, given as
μ
+
a
−
1
log
e
a
log
e
μ
with
μ
=
O
(
log
N
)
and
a being the degree of a key tree, leads to the minimal storage as
O
(
N
log
N
)
, when the update communication constraint is given as
O
(
log
N
)
. We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2004.10.012</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Calculus of variations and optimal control ; Communication ; Communications systems ; Computer science; control theory; systems ; Cryptography ; Exact sciences and technology ; Group rekey ; Information storage ; Information, signal and communications theory ; Key management/distribution ; Mathematical analysis ; Mathematics ; Number theory ; One-way function ; Optimization ; Sciences and techniques of general use ; Secure multicast/broadcast ; Signal and communications theory ; Studies ; Telecommunications and information theory ; Theoretical computing</subject><ispartof>Information processing letters, 2005-02, Vol.93 (4), p.191-198</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 28, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</citedby><cites>FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2004.10.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16422034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mingyan</creatorcontrib><creatorcontrib>Poovendran, Radha</creatorcontrib><creatorcontrib>McGrew, David A.</creatorcontrib><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><title>Information processing letters</title><description>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of
N members into clusters of
M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size
M. Due to the monotonicity of the center storage with respect to
M, we convert the constrained optimization into a fixed point equation and derive the optimal
M
*
explicitly. We show that the asymptotic value of the optimal
M
*
, given as
μ
+
a
−
1
log
e
a
log
e
μ
with
μ
=
O
(
log
N
)
and
a being the degree of a key tree, leads to the minimal storage as
O
(
N
log
N
)
, when the update communication constraint is given as
O
(
log
N
)
. We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Group rekey</subject><subject>Information storage</subject><subject>Information, signal and communications theory</subject><subject>Key management/distribution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>One-way function</subject><subject>Optimization</subject><subject>Sciences and techniques of general use</subject><subject>Secure multicast/broadcast</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9vEzEQxS1EJULLB-BmIXHcMPZ6_4kTqiggFXGhZ8uZnU0nZO1ge6nST4_TVOLGaTSj33tP84R4q2CtQLUfdms-7NcawJR9DUq_ECvVd7pqlRpeihWAhgrUAK_E65R2ANCauluJ-J09z_zIfiuRfKYof9FRphyi25JkL--Pm8ijDJ6qB3eU0-Ixc_By4xKNchvDcniSzM4XxVw85APne4lhnhfP6J5oDD7l6NjndCUuJrdP9OZ5Xoq7m88_r79Wtz--fLv-dFth3ZhcocHJNZsGh74exx571N3QNgANTajRGdc7BV1jCJFaPUBTq7Zra5x6o0c11pfi3dn3EMPvhVK2u7BEXyKtrjvdNQUukDpDGENKkSZ7iDy7eLQK7KlZu7OlWXtq9nQqzRbN-2djl9Dtp-g8cvonbI3WUJvCfTxzVL78wxRtQiaPNHIkzHYM_J-Uv7TKkCo</recordid><startdate>20050228</startdate><enddate>20050228</enddate><creator>Li, Mingyan</creator><creator>Poovendran, Radha</creator><creator>McGrew, David A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050228</creationdate><title>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</title><author>Li, Mingyan ; Poovendran, Radha ; McGrew, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-c4cfa5b5c983dd8c8c27965005efc2ca4a8a10754ecce62905316763cf842d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Group rekey</topic><topic>Information storage</topic><topic>Information, signal and communications theory</topic><topic>Key management/distribution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>One-way function</topic><topic>Optimization</topic><topic>Sciences and techniques of general use</topic><topic>Secure multicast/broadcast</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingyan</creatorcontrib><creatorcontrib>Poovendran, Radha</creatorcontrib><creatorcontrib>McGrew, David A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingyan</au><au>Poovendran, Radha</au><au>McGrew, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing center key storage in hybrid one-way function based group key management with communication constraints</atitle><jtitle>Information processing letters</jtitle><date>2005-02-28</date><risdate>2005</risdate><volume>93</volume><issue>4</issue><spage>191</spage><epage>198</epage><pages>191-198</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We study the problem of designing a storage efficient secure multicast key management scheme based on one-way function trees (OFT) for a prespecified key update communication overhead. Canetti, Malkin and Nissim presented a hybrid model that divides a group of
N members into clusters of
M members and assigns each cluster to one leaf node of a key tree. Using the model, we formulate a constrained optimization problem to minimize the center storage in terms of the cluster size
M. Due to the monotonicity of the center storage with respect to
M, we convert the constrained optimization into a fixed point equation and derive the optimal
M
*
explicitly. We show that the asymptotic value of the optimal
M
*
, given as
μ
+
a
−
1
log
e
a
log
e
μ
with
μ
=
O
(
log
N
)
and
a being the degree of a key tree, leads to the minimal storage as
O
(
N
log
N
)
, when the update communication constraint is given as
O
(
log
N
)
. We present an explicit design algorithm that achieves minimal center storage for a given update communication constraint.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2004.10.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0190 |
ispartof | Information processing letters, 2005-02, Vol.93 (4), p.191-198 |
issn | 0020-0190 1872-6119 |
language | eng |
recordid | cdi_proquest_journals_237275763 |
source | Elsevier ScienceDirect Journals |
subjects | Algebra Algorithmics. Computability. Computer arithmetics Applied sciences Calculus of variations and optimal control Communication Communications systems Computer science control theory systems Cryptography Exact sciences and technology Group rekey Information storage Information, signal and communications theory Key management/distribution Mathematical analysis Mathematics Number theory One-way function Optimization Sciences and techniques of general use Secure multicast/broadcast Signal and communications theory Studies Telecommunications and information theory Theoretical computing |
title | Minimizing center key storage in hybrid one-way function based group key management with communication constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20center%20key%20storage%20in%20hybrid%20one-way%20function%20based%20group%20key%20management%20with%20communication%20constraints&rft.jtitle=Information%20processing%20letters&rft.au=Li,%20Mingyan&rft.date=2005-02-28&rft.volume=93&rft.issue=4&rft.spage=191&rft.epage=198&rft.pages=191-198&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2004.10.012&rft_dat=%3Cproquest_cross%3E783600251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237275763&rft_id=info:pmid/&rft_els_id=S0020019004003230&rfr_iscdi=true |