Another look at the degree constrained subgraph problem

There are several versions of the degree constrained subgraph problem. Earlier work used the linear programming approach to solve the problem. However, a more combinatorial approach is presented. A restricted problem is reduced to the regular maximum matching problem by means of a simple constructio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1981-04, Vol.12 (2), p.89-92
1. Verfasser: Shiloach, Yossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 2
container_start_page 89
container_title Information processing letters
container_volume 12
creator Shiloach, Yossi
description There are several versions of the degree constrained subgraph problem. Earlier work used the linear programming approach to solve the problem. However, a more combinatorial approach is presented. A restricted problem is reduced to the regular maximum matching problem by means of a simple construction. The same construction yields a reduction of the weighted version of this problem to the weighted maximum matching problem. An alternating path technique is used to obtain a solution to the general problem from that of the restricted problem. The corresponding weighted problem is reduced to the weighted matching problem. An application is made to an edge-partitioning problem that is closely related to edge-coloring problems. Figures.
doi_str_mv 10.1016/0020-0190(81)90009-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237263212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020019081900090</els_id><sourcerecordid>1136194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-31bc587a488b9b9af3bac4cdb260eaf12777e6ea7dd13f3061a17963bd5e6e413</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gYfFkx5WZ5JtsnsRivgFBS96DvmYbbe2m5psBf97UysePQ0z_N4b3mPsHOEaAeUNAIcSsIHLGq8aAGhKOGAjrBUvJWJzyEZ_yDE7SWmZGVkJNWJq2odhQbFYhfBemKHIS-FpHokKF_o0RNP15Iu0tfNoNotiE4Nd0fqUHbVmlejsd47Z28P9691TOXt5fL6bzkonBA6lQOsmtTJVXdvGNqYV1rjKecslkGmRK6VIklHeo2gFSDSoGimsn-RzhWLMLva--e_HltKgl2Eb-_xSc6G4FBx5hqo95GJIKVKrN7Fbm_ilEfSuIb2Lr3fxdY36pyENWXa7l1EO8NlR1Ml11DvyXSQ3aB-6_w2-AcZKa_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237263212</pqid></control><display><type>article</type><title>Another look at the degree constrained subgraph problem</title><source>Elsevier ScienceDirect Journals</source><creator>Shiloach, Yossi</creator><creatorcontrib>Shiloach, Yossi</creatorcontrib><description>There are several versions of the degree constrained subgraph problem. Earlier work used the linear programming approach to solve the problem. However, a more combinatorial approach is presented. A restricted problem is reduced to the regular maximum matching problem by means of a simple construction. The same construction yields a reduction of the weighted version of this problem to the weighted maximum matching problem. An alternating path technique is used to obtain a solution to the general problem from that of the restricted problem. The corresponding weighted problem is reduced to the weighted matching problem. An application is made to an edge-partitioning problem that is closely related to edge-coloring problems. Figures.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/0020-0190(81)90009-0</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Constraints ; degree-constrained subgraph ; Graph ; Graphs ; Information processing ; Linear programming ; matching ; Partitions</subject><ispartof>Information processing letters, 1981-04, Vol.12 (2), p.89-92</ispartof><rights>1981</rights><rights>Copyright Elsevier Sequoia S.A. Apr 13, 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-31bc587a488b9b9af3bac4cdb260eaf12777e6ea7dd13f3061a17963bd5e6e413</citedby><cites>FETCH-LOGICAL-c331t-31bc587a488b9b9af3bac4cdb260eaf12777e6ea7dd13f3061a17963bd5e6e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0020019081900090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shiloach, Yossi</creatorcontrib><title>Another look at the degree constrained subgraph problem</title><title>Information processing letters</title><description>There are several versions of the degree constrained subgraph problem. Earlier work used the linear programming approach to solve the problem. However, a more combinatorial approach is presented. A restricted problem is reduced to the regular maximum matching problem by means of a simple construction. The same construction yields a reduction of the weighted version of this problem to the weighted maximum matching problem. An alternating path technique is used to obtain a solution to the general problem from that of the restricted problem. The corresponding weighted problem is reduced to the weighted matching problem. An application is made to an edge-partitioning problem that is closely related to edge-coloring problems. Figures.</description><subject>Constraints</subject><subject>degree-constrained subgraph</subject><subject>Graph</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Linear programming</subject><subject>matching</subject><subject>Partitions</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKv_gYfFkx5WZ5JtsnsRivgFBS96DvmYbbe2m5psBf97UysePQ0z_N4b3mPsHOEaAeUNAIcSsIHLGq8aAGhKOGAjrBUvJWJzyEZ_yDE7SWmZGVkJNWJq2odhQbFYhfBemKHIS-FpHokKF_o0RNP15Iu0tfNoNotiE4Nd0fqUHbVmlejsd47Z28P9691TOXt5fL6bzkonBA6lQOsmtTJVXdvGNqYV1rjKecslkGmRK6VIklHeo2gFSDSoGimsn-RzhWLMLva--e_HltKgl2Eb-_xSc6G4FBx5hqo95GJIKVKrN7Fbm_ilEfSuIb2Lr3fxdY36pyENWXa7l1EO8NlR1Ml11DvyXSQ3aB-6_w2-AcZKa_k</recordid><startdate>19810413</startdate><enddate>19810413</enddate><creator>Shiloach, Yossi</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19810413</creationdate><title>Another look at the degree constrained subgraph problem</title><author>Shiloach, Yossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-31bc587a488b9b9af3bac4cdb260eaf12777e6ea7dd13f3061a17963bd5e6e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Constraints</topic><topic>degree-constrained subgraph</topic><topic>Graph</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Linear programming</topic><topic>matching</topic><topic>Partitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiloach, Yossi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiloach, Yossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Another look at the degree constrained subgraph problem</atitle><jtitle>Information processing letters</jtitle><date>1981-04-13</date><risdate>1981</risdate><volume>12</volume><issue>2</issue><spage>89</spage><epage>92</epage><pages>89-92</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>There are several versions of the degree constrained subgraph problem. Earlier work used the linear programming approach to solve the problem. However, a more combinatorial approach is presented. A restricted problem is reduced to the regular maximum matching problem by means of a simple construction. The same construction yields a reduction of the weighted version of this problem to the weighted maximum matching problem. An alternating path technique is used to obtain a solution to the general problem from that of the restricted problem. The corresponding weighted problem is reduced to the weighted matching problem. An application is made to an edge-partitioning problem that is closely related to edge-coloring problems. Figures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0020-0190(81)90009-0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1981-04, Vol.12 (2), p.89-92
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_237263212
source Elsevier ScienceDirect Journals
subjects Constraints
degree-constrained subgraph
Graph
Graphs
Information processing
Linear programming
matching
Partitions
title Another look at the degree constrained subgraph problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Another%20look%20at%20the%20degree%20constrained%20subgraph%20problem&rft.jtitle=Information%20processing%20letters&rft.au=Shiloach,%20Yossi&rft.date=1981-04-13&rft.volume=12&rft.issue=2&rft.spage=89&rft.epage=92&rft.pages=89-92&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/0020-0190(81)90009-0&rft_dat=%3Cproquest_cross%3E1136194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237263212&rft_id=info:pmid/&rft_els_id=0020019081900090&rfr_iscdi=true