New Graph Classes of Bounded Clique-Width

The clique-width of graphs is a major new concept with respect to the efficiency of graph algorithms; it is known that every problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(?1,L) by Courcelle et al. is linear-time solvable on any graph class with bounded clique-wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2005-09, Vol.38 (5), p.623-645
Hauptverfasser: Brandstädt, Andreas, Dragan, Feodor F., Le, Hoàng-Oanh, Mosca, Raffaele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 5
container_start_page 623
container_title Theory of computing systems
container_volume 38
creator Brandstädt, Andreas
Dragan, Feodor F.
Le, Hoàng-Oanh
Mosca, Raffaele
description The clique-width of graphs is a major new concept with respect to the efficiency of graph algorithms; it is known that every problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(?1,L) by Courcelle et al. is linear-time solvable on any graph class with bounded clique-width for which a k-expression for the input graph can be constructed in linear time. The notion of clique-width extends the one of treewidth since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden one-vertex extensions of the P4 (i.e., the path with four vertices a,b,c,d and three edges ab,bc,cd) with respect to bounded clique-width. Our results extend and improve recent structural and complexity results in a systematic way. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00224-004-1154-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_237228697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>885815361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-a01041a5c81b3a1ebf96d5b1bc8f2e2092646ea4fba3df8bfa52ca6aeb1bf4993</originalsourceid><addsrcrecordid>eNotkEFLxDAQhYMouK7-AG_Fm4foZJKm7VGLrsKiF8VjmLQJ22Xd1qRF_Pdmrac3PD7mwcfYpYAbAVDcRgBExQEUFyJXXB-xhVBSclAVHP_dyJXM4ZSdxbgFAFkCLNj1i_vOVoGGTVbvKEYXs95n9_20b12bqu5rcvyja8fNOTvxtIvu4j-X7P3x4a1-4uvX1XN9t-YNFjhyAgFKUN6UwkoSzvpKt7kVtik9OoQKtdKOlLckW19aTzk2pMklxKuqkkt2Nf8dQp_G42i2_RT2adKgLBBLXRUJEjPUhD7G4LwZQvdJ4ccIMAchZhZikhBzEGK0_AUSxlH_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237228697</pqid></control><display><type>article</type><title>New Graph Classes of Bounded Clique-Width</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Brandstädt, Andreas ; Dragan, Feodor F. ; Le, Hoàng-Oanh ; Mosca, Raffaele</creator><creatorcontrib>Brandstädt, Andreas ; Dragan, Feodor F. ; Le, Hoàng-Oanh ; Mosca, Raffaele</creatorcontrib><description>The clique-width of graphs is a major new concept with respect to the efficiency of graph algorithms; it is known that every problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(?1,L) by Courcelle et al. is linear-time solvable on any graph class with bounded clique-width for which a k-expression for the input graph can be constructed in linear time. The notion of clique-width extends the one of treewidth since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden one-vertex extensions of the P4 (i.e., the path with four vertices a,b,c,d and three edges ab,bc,cd) with respect to bounded clique-width. Our results extend and improve recent structural and complexity results in a systematic way. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-004-1154-6</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Classification ; Computer science ; Decomposition ; Graph algorithms ; Graphs ; Studies</subject><ispartof>Theory of computing systems, 2005-09, Vol.38 (5), p.623-645</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-a01041a5c81b3a1ebf96d5b1bc8f2e2092646ea4fba3df8bfa52ca6aeb1bf4993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Brandstädt, Andreas</creatorcontrib><creatorcontrib>Dragan, Feodor F.</creatorcontrib><creatorcontrib>Le, Hoàng-Oanh</creatorcontrib><creatorcontrib>Mosca, Raffaele</creatorcontrib><title>New Graph Classes of Bounded Clique-Width</title><title>Theory of computing systems</title><description>The clique-width of graphs is a major new concept with respect to the efficiency of graph algorithms; it is known that every problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(?1,L) by Courcelle et al. is linear-time solvable on any graph class with bounded clique-width for which a k-expression for the input graph can be constructed in linear time. The notion of clique-width extends the one of treewidth since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden one-vertex extensions of the P4 (i.e., the path with four vertices a,b,c,d and three edges ab,bc,cd) with respect to bounded clique-width. Our results extend and improve recent structural and complexity results in a systematic way. [PUBLICATION ABSTRACT]</description><subject>Classification</subject><subject>Computer science</subject><subject>Decomposition</subject><subject>Graph algorithms</subject><subject>Graphs</subject><subject>Studies</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFLxDAQhYMouK7-AG_Fm4foZJKm7VGLrsKiF8VjmLQJ22Xd1qRF_Pdmrac3PD7mwcfYpYAbAVDcRgBExQEUFyJXXB-xhVBSclAVHP_dyJXM4ZSdxbgFAFkCLNj1i_vOVoGGTVbvKEYXs95n9_20b12bqu5rcvyja8fNOTvxtIvu4j-X7P3x4a1-4uvX1XN9t-YNFjhyAgFKUN6UwkoSzvpKt7kVtik9OoQKtdKOlLckW19aTzk2pMklxKuqkkt2Nf8dQp_G42i2_RT2adKgLBBLXRUJEjPUhD7G4LwZQvdJ4ccIMAchZhZikhBzEGK0_AUSxlH_</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Brandstädt, Andreas</creator><creator>Dragan, Feodor F.</creator><creator>Le, Hoàng-Oanh</creator><creator>Mosca, Raffaele</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200509</creationdate><title>New Graph Classes of Bounded Clique-Width</title><author>Brandstädt, Andreas ; Dragan, Feodor F. ; Le, Hoàng-Oanh ; Mosca, Raffaele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-a01041a5c81b3a1ebf96d5b1bc8f2e2092646ea4fba3df8bfa52ca6aeb1bf4993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Classification</topic><topic>Computer science</topic><topic>Decomposition</topic><topic>Graph algorithms</topic><topic>Graphs</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandstädt, Andreas</creatorcontrib><creatorcontrib>Dragan, Feodor F.</creatorcontrib><creatorcontrib>Le, Hoàng-Oanh</creatorcontrib><creatorcontrib>Mosca, Raffaele</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandstädt, Andreas</au><au>Dragan, Feodor F.</au><au>Le, Hoàng-Oanh</au><au>Mosca, Raffaele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Graph Classes of Bounded Clique-Width</atitle><jtitle>Theory of computing systems</jtitle><date>2005-09</date><risdate>2005</risdate><volume>38</volume><issue>5</issue><spage>623</spage><epage>645</epage><pages>623-645</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>The clique-width of graphs is a major new concept with respect to the efficiency of graph algorithms; it is known that every problem expressible in a certain kind of Monadic Second Order Logic called LinEMSOL(?1,L) by Courcelle et al. is linear-time solvable on any graph class with bounded clique-width for which a k-expression for the input graph can be constructed in linear time. The notion of clique-width extends the one of treewidth since bounded treewidth implies bounded clique-width. We give a complete classification of all graph classes defined by forbidden one-vertex extensions of the P4 (i.e., the path with four vertices a,b,c,d and three edges ab,bc,cd) with respect to bounded clique-width. Our results extend and improve recent structural and complexity results in a systematic way. [PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00224-004-1154-6</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2005-09, Vol.38 (5), p.623-645
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_237228697
source SpringerLink Journals; Business Source Complete
subjects Classification
Computer science
Decomposition
Graph algorithms
Graphs
Studies
title New Graph Classes of Bounded Clique-Width
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Graph%20Classes%20of%20Bounded%20Clique-Width&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Brandst%C3%A4dt,%20Andreas&rft.date=2005-09&rft.volume=38&rft.issue=5&rft.spage=623&rft.epage=645&rft.pages=623-645&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-004-1154-6&rft_dat=%3Cproquest_cross%3E885815361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237228697&rft_id=info:pmid/&rfr_iscdi=true