A quantum classification algorithm for classification incomplete patterns based on entanglement measure

In this paper, a novel quantum classification algorithm that is based on competitive learning is presented to classify an input pattern that results from the failures of some sensors. As long as an incomplete pattern is presented to our model, the proposed algorithm performs the competitions between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (3), p.2809-2816
Hauptverfasser: Abdel-Aty, Abdel-Haleem, Kadry, Heba, Zidan, Mohammed, Al-Sbou, Yazeed, Zanaty, E. A., Abdel-Aty, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2816
container_issue 3
container_start_page 2809
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Abdel-Aty, Abdel-Haleem
Kadry, Heba
Zidan, Mohammed
Al-Sbou, Yazeed
Zanaty, E. A.
Abdel-Aty, Mahmoud
description In this paper, a novel quantum classification algorithm that is based on competitive learning is presented to classify an input pattern that results from the failures of some sensors. As long as an incomplete pattern is presented to our model, the proposed algorithm performs the competitions between the neurons by applying some unitary transformations then measures the degree of entanglement using concurrence measure to find the winner class based on the winner-take-all technique. The proposed algorithm finds the most likely winning class label in between two binary competitive classes for an incomplete pattern presented to the proposed model. Because larger scale quantum computers are still in the lab, we studied the proposed algorithm on a case study.
doi_str_mv 10.3233/JIFS-179566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371939895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371939895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-9151eb9a2604f9945981a3e0af5a4b1abe0a90f6f454d4e6b8c9a2169508b07a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKsr_0DApYwmk4-ZLEuxtVJwoa7Dm2lSp8wk0ySz8N-bUleu3oF7uA8uQveUPLGSsee3zeqjoJUSUl6gGa0rUdRKVpeZieQFLbm8RjcxHgihlSjJDO0X-DiBS9OA2x5i7GzXQuq8w9DvfejS94CtD__DzrV-GHuTDB4hJRNcxA1Es8M5NC6B2_dmyIAHA3EK5hZdWeijufu7c_S1evlcvhbb9_VmudgWLZMqFYoKahoFpSTcKsWFqikwQ8AK4A2FJqMiVlou-I4b2dRtlqlUgtQNqYDN0cO5dwz-OJmY9MFPweWXumQVVUzVSmTr8Wy1wccYjNVj6AYIP5oSfVpSn5bU5yXZLyNOaAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371939895</pqid></control><display><type>article</type><title>A quantum classification algorithm for classification incomplete patterns based on entanglement measure</title><source>EBSCOhost Business Source Complete</source><creator>Abdel-Aty, Abdel-Haleem ; Kadry, Heba ; Zidan, Mohammed ; Al-Sbou, Yazeed ; Zanaty, E. A. ; Abdel-Aty, Mahmoud</creator><contributor>Farouk, Ahmed</contributor><creatorcontrib>Abdel-Aty, Abdel-Haleem ; Kadry, Heba ; Zidan, Mohammed ; Al-Sbou, Yazeed ; Zanaty, E. A. ; Abdel-Aty, Mahmoud ; Farouk, Ahmed</creatorcontrib><description>In this paper, a novel quantum classification algorithm that is based on competitive learning is presented to classify an input pattern that results from the failures of some sensors. As long as an incomplete pattern is presented to our model, the proposed algorithm performs the competitions between the neurons by applying some unitary transformations then measures the degree of entanglement using concurrence measure to find the winner class based on the winner-take-all technique. The proposed algorithm finds the most likely winning class label in between two binary competitive classes for an incomplete pattern presented to the proposed model. Because larger scale quantum computers are still in the lab, we studied the proposed algorithm on a case study.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179566</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Classification ; Computer simulation ; Machine learning ; Quantum computers ; Quantum entanglement</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (3), p.2809-2816</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-9151eb9a2604f9945981a3e0af5a4b1abe0a90f6f454d4e6b8c9a2169508b07a3</citedby><cites>FETCH-LOGICAL-c369t-9151eb9a2604f9945981a3e0af5a4b1abe0a90f6f454d4e6b8c9a2169508b07a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Farouk, Ahmed</contributor><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><creatorcontrib>Kadry, Heba</creatorcontrib><creatorcontrib>Zidan, Mohammed</creatorcontrib><creatorcontrib>Al-Sbou, Yazeed</creatorcontrib><creatorcontrib>Zanaty, E. A.</creatorcontrib><creatorcontrib>Abdel-Aty, Mahmoud</creatorcontrib><title>A quantum classification algorithm for classification incomplete patterns based on entanglement measure</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, a novel quantum classification algorithm that is based on competitive learning is presented to classify an input pattern that results from the failures of some sensors. As long as an incomplete pattern is presented to our model, the proposed algorithm performs the competitions between the neurons by applying some unitary transformations then measures the degree of entanglement using concurrence measure to find the winner class based on the winner-take-all technique. The proposed algorithm finds the most likely winning class label in between two binary competitive classes for an incomplete pattern presented to the proposed model. Because larger scale quantum computers are still in the lab, we studied the proposed algorithm on a case study.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Machine learning</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEURYMoWKsr_0DApYwmk4-ZLEuxtVJwoa7Dm2lSp8wk0ySz8N-bUleu3oF7uA8uQveUPLGSsee3zeqjoJUSUl6gGa0rUdRKVpeZieQFLbm8RjcxHgihlSjJDO0X-DiBS9OA2x5i7GzXQuq8w9DvfejS94CtD__DzrV-GHuTDB4hJRNcxA1Es8M5NC6B2_dmyIAHA3EK5hZdWeijufu7c_S1evlcvhbb9_VmudgWLZMqFYoKahoFpSTcKsWFqikwQ8AK4A2FJqMiVlou-I4b2dRtlqlUgtQNqYDN0cO5dwz-OJmY9MFPweWXumQVVUzVSmTr8Wy1wccYjNVj6AYIP5oSfVpSn5bU5yXZLyNOaAo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Abdel-Aty, Abdel-Haleem</creator><creator>Kadry, Heba</creator><creator>Zidan, Mohammed</creator><creator>Al-Sbou, Yazeed</creator><creator>Zanaty, E. A.</creator><creator>Abdel-Aty, Mahmoud</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>A quantum classification algorithm for classification incomplete patterns based on entanglement measure</title><author>Abdel-Aty, Abdel-Haleem ; Kadry, Heba ; Zidan, Mohammed ; Al-Sbou, Yazeed ; Zanaty, E. A. ; Abdel-Aty, Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-9151eb9a2604f9945981a3e0af5a4b1abe0a90f6f454d4e6b8c9a2169508b07a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Machine learning</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><creatorcontrib>Kadry, Heba</creatorcontrib><creatorcontrib>Zidan, Mohammed</creatorcontrib><creatorcontrib>Al-Sbou, Yazeed</creatorcontrib><creatorcontrib>Zanaty, E. A.</creatorcontrib><creatorcontrib>Abdel-Aty, Mahmoud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Aty, Abdel-Haleem</au><au>Kadry, Heba</au><au>Zidan, Mohammed</au><au>Al-Sbou, Yazeed</au><au>Zanaty, E. A.</au><au>Abdel-Aty, Mahmoud</au><au>Farouk, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantum classification algorithm for classification incomplete patterns based on entanglement measure</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>2809</spage><epage>2816</epage><pages>2809-2816</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a novel quantum classification algorithm that is based on competitive learning is presented to classify an input pattern that results from the failures of some sensors. As long as an incomplete pattern is presented to our model, the proposed algorithm performs the competitions between the neurons by applying some unitary transformations then measures the degree of entanglement using concurrence measure to find the winner class based on the winner-take-all technique. The proposed algorithm finds the most likely winning class label in between two binary competitive classes for an incomplete pattern presented to the proposed model. Because larger scale quantum computers are still in the lab, we studied the proposed algorithm on a case study.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179566</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (3), p.2809-2816
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2371939895
source EBSCOhost Business Source Complete
subjects Algorithms
Classification
Computer simulation
Machine learning
Quantum computers
Quantum entanglement
title A quantum classification algorithm for classification incomplete patterns based on entanglement measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantum%20classification%20algorithm%20for%20classification%20incomplete%20patterns%20based%20on%20entanglement%20measure&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Abdel-Aty,%20Abdel-Haleem&rft.date=2020-01-01&rft.volume=38&rft.issue=3&rft.spage=2809&rft.epage=2816&rft.pages=2809-2816&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179566&rft_dat=%3Cproquest_cross%3E2371939895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371939895&rft_id=info:pmid/&rfr_iscdi=true