Visualization of activated muscle area based on sEMG

Based on HSV gamut space, a visualization system of muscle activity is proposed to study the mapping relationship between hand motion and active areas of upper arm muscle. There is a significant threshold change in the starting and ending points of the active segment in the original EMG signal, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (3), p.2623-2634
Hauptverfasser: Cheng, Yangwei, Li, Gongfa, Li, Jiahan, Sun, Ying, Jiang, Guozhang, Zeng, Fei, Zhao, Haoyi, Chen, Disi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2634
container_issue 3
container_start_page 2623
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Cheng, Yangwei
Li, Gongfa
Li, Jiahan
Sun, Ying
Jiang, Guozhang
Zeng, Fei
Zhao, Haoyi
Chen, Disi
description Based on HSV gamut space, a visualization system of muscle activity is proposed to study the mapping relationship between hand motion and active areas of upper arm muscle. There is a significant threshold change in the starting and ending points of the active segment in the original EMG signal, and the part that exceeds the threshold TH is the active segment date. Set the window width K and fixed increment Kt of time window to remove redundant data. The sEMG intensity information of each sampling electrode is obtained by calculating MAV in each window, and the simulation experiment is conducted in HSV gamut space. Through the human-computer interaction experiment of the visual system, it is proved that this system can visually display the relationship between different channels in the spatial domain, thus intuitively identify the activity intensity of different muscles in hand motion.
doi_str_mv 10.3233/JIFS-179549
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371933783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371933783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f925377ef56b1d70a5f5dc7709fad17fb0003583f37d7f05814133131df3ff533</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsFZP_oGAR4nOZLKZ5CilrZWKBz-uyybZgZS0qbuJoL--KfU0L8PD-8Kj1C3CAyVEjy-rxXuMXOi0OFMTzFnHeZHx-ZghS2NM0uxSXYWwAUDWCUxU-tWEwbbNn-2bbhd1Etmqb35s7-poO4SqdZH1zkalDeNnJML8dXmtLsS2wd3836n6XMw_Zs_x-m25mj2t44qA-liKRBOzE52VWDNYLbqumKEQWyNLCQCkcxLimgV0jikSIWEtJKKJpuru1Lv33ffgQm823eB346RJiLEg4vxI3Z-oyncheCdm75ut9b8GwRy1mKMWc9JCB3i7Us0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371933783</pqid></control><display><type>article</type><title>Visualization of activated muscle area based on sEMG</title><source>Business Source Complete</source><creator>Cheng, Yangwei ; Li, Gongfa ; Li, Jiahan ; Sun, Ying ; Jiang, Guozhang ; Zeng, Fei ; Zhao, Haoyi ; Chen, Disi</creator><contributor>Farouk, Ahmed</contributor><creatorcontrib>Cheng, Yangwei ; Li, Gongfa ; Li, Jiahan ; Sun, Ying ; Jiang, Guozhang ; Zeng, Fei ; Zhao, Haoyi ; Chen, Disi ; Farouk, Ahmed</creatorcontrib><description>Based on HSV gamut space, a visualization system of muscle activity is proposed to study the mapping relationship between hand motion and active areas of upper arm muscle. There is a significant threshold change in the starting and ending points of the active segment in the original EMG signal, and the part that exceeds the threshold TH is the active segment date. Set the window width K and fixed increment Kt of time window to remove redundant data. The sEMG intensity information of each sampling electrode is obtained by calculating MAV in each window, and the simulation experiment is conducted in HSV gamut space. Through the human-computer interaction experiment of the visual system, it is proved that this system can visually display the relationship between different channels in the spatial domain, thus intuitively identify the activity intensity of different muscles in hand motion.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179549</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Computer simulation ; Mapping ; Muscles ; Visualization ; Windows (intervals)</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (3), p.2623-2634</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-f925377ef56b1d70a5f5dc7709fad17fb0003583f37d7f05814133131df3ff533</citedby><cites>FETCH-LOGICAL-c303t-f925377ef56b1d70a5f5dc7709fad17fb0003583f37d7f05814133131df3ff533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Farouk, Ahmed</contributor><creatorcontrib>Cheng, Yangwei</creatorcontrib><creatorcontrib>Li, Gongfa</creatorcontrib><creatorcontrib>Li, Jiahan</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Jiang, Guozhang</creatorcontrib><creatorcontrib>Zeng, Fei</creatorcontrib><creatorcontrib>Zhao, Haoyi</creatorcontrib><creatorcontrib>Chen, Disi</creatorcontrib><title>Visualization of activated muscle area based on sEMG</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Based on HSV gamut space, a visualization system of muscle activity is proposed to study the mapping relationship between hand motion and active areas of upper arm muscle. There is a significant threshold change in the starting and ending points of the active segment in the original EMG signal, and the part that exceeds the threshold TH is the active segment date. Set the window width K and fixed increment Kt of time window to remove redundant data. The sEMG intensity information of each sampling electrode is obtained by calculating MAV in each window, and the simulation experiment is conducted in HSV gamut space. Through the human-computer interaction experiment of the visual system, it is proved that this system can visually display the relationship between different channels in the spatial domain, thus intuitively identify the activity intensity of different muscles in hand motion.</description><subject>Computer simulation</subject><subject>Mapping</subject><subject>Muscles</subject><subject>Visualization</subject><subject>Windows (intervals)</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1Lw0AQhhdRsFZP_oGAR4nOZLKZ5CilrZWKBz-uyybZgZS0qbuJoL--KfU0L8PD-8Kj1C3CAyVEjy-rxXuMXOi0OFMTzFnHeZHx-ZghS2NM0uxSXYWwAUDWCUxU-tWEwbbNn-2bbhd1Etmqb35s7-poO4SqdZH1zkalDeNnJML8dXmtLsS2wd3836n6XMw_Zs_x-m25mj2t44qA-liKRBOzE52VWDNYLbqumKEQWyNLCQCkcxLimgV0jikSIWEtJKKJpuru1Lv33ffgQm823eB346RJiLEg4vxI3Z-oyncheCdm75ut9b8GwRy1mKMWc9JCB3i7Us0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Cheng, Yangwei</creator><creator>Li, Gongfa</creator><creator>Li, Jiahan</creator><creator>Sun, Ying</creator><creator>Jiang, Guozhang</creator><creator>Zeng, Fei</creator><creator>Zhao, Haoyi</creator><creator>Chen, Disi</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Visualization of activated muscle area based on sEMG</title><author>Cheng, Yangwei ; Li, Gongfa ; Li, Jiahan ; Sun, Ying ; Jiang, Guozhang ; Zeng, Fei ; Zhao, Haoyi ; Chen, Disi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f925377ef56b1d70a5f5dc7709fad17fb0003583f37d7f05814133131df3ff533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Mapping</topic><topic>Muscles</topic><topic>Visualization</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yangwei</creatorcontrib><creatorcontrib>Li, Gongfa</creatorcontrib><creatorcontrib>Li, Jiahan</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Jiang, Guozhang</creatorcontrib><creatorcontrib>Zeng, Fei</creatorcontrib><creatorcontrib>Zhao, Haoyi</creatorcontrib><creatorcontrib>Chen, Disi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yangwei</au><au>Li, Gongfa</au><au>Li, Jiahan</au><au>Sun, Ying</au><au>Jiang, Guozhang</au><au>Zeng, Fei</au><au>Zhao, Haoyi</au><au>Chen, Disi</au><au>Farouk, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of activated muscle area based on sEMG</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>2623</spage><epage>2634</epage><pages>2623-2634</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Based on HSV gamut space, a visualization system of muscle activity is proposed to study the mapping relationship between hand motion and active areas of upper arm muscle. There is a significant threshold change in the starting and ending points of the active segment in the original EMG signal, and the part that exceeds the threshold TH is the active segment date. Set the window width K and fixed increment Kt of time window to remove redundant data. The sEMG intensity information of each sampling electrode is obtained by calculating MAV in each window, and the simulation experiment is conducted in HSV gamut space. Through the human-computer interaction experiment of the visual system, it is proved that this system can visually display the relationship between different channels in the spatial domain, thus intuitively identify the activity intensity of different muscles in hand motion.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179549</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (3), p.2623-2634
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2371933783
source Business Source Complete
subjects Computer simulation
Mapping
Muscles
Visualization
Windows (intervals)
title Visualization of activated muscle area based on sEMG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20activated%20muscle%20area%20based%20on%20sEMG&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Cheng,%20Yangwei&rft.date=2020-01-01&rft.volume=38&rft.issue=3&rft.spage=2623&rft.epage=2634&rft.pages=2623-2634&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179549&rft_dat=%3Cproquest_cross%3E2371933783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371933783&rft_id=info:pmid/&rfr_iscdi=true