Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm

SEMG signal is a bioelectrical signal produced by the contraction of human surface muscles. Human-computer interaction based on SEMG signal is of great significance in the field of rehabilitation robots. In this study, a feature extraction method of SEMG signal based on activated muscle regionis pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.38 (3), p.2725-2735
Hauptverfasser: Liao, Shangchun, Li, Gongfa, Li, Jiahan, Jiang, Du, Jiang, Guozhang, Sun, Ying, Tao, Bo, Zhao, Haoyi, Chen, Disi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2735
container_issue 3
container_start_page 2725
container_title Journal of intelligent & fuzzy systems
container_volume 38
creator Liao, Shangchun
Li, Gongfa
Li, Jiahan
Jiang, Du
Jiang, Guozhang
Sun, Ying
Tao, Bo
Zhao, Haoyi
Chen, Disi
description SEMG signal is a bioelectrical signal produced by the contraction of human surface muscles. Human-computer interaction based on SEMG signal is of great significance in the field of rehabilitation robots. In this study, a feature extraction method of SEMG signal based on activated muscle regionis proposed, which is based on the study of activated muscle regionin human forearm and hand movement. At the same time, the main research object of this study is the multi-object intergroup SEMG signal which is closer to the practical application environment. The new feature extracted is fused with the sample entropy feature and the wavelength feature to obtain better signal features. After combining the fusion feature with KNN algorithm, the hand motion pattern recognition and classification between multi-object groups is carried out. The combination of the fusion feature and KNN classification algorithm can achieve 91.05% in the multi-object intergroup hand motion classification. This method has lower computational cost without expensive hardware support, and improves the robustness of hand motion recognition based on EMG signals.
doi_str_mv 10.3233/JIFS-179558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371931413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371931413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-2e7db9251638c6e443250478a71f57a60d72dafb228256d74c5606fbccc2091f3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsn_0DAo0Tznd2jFD-qtR7Ui5eQzSZrSrupSRbx37u1nmaY92FmeAA4J_iKUcauH-d3r4ioWojqAExIpQSqaqkOxx5Ljgjl8hic5LzCmChB8QR8PA_rElBsVs4WGPriUpfisIWdy2VIDiZnY9eHEmIPbdw0oXct_A7lE_oh74bemT_Q9C18Wi6hWXcxjfnmFBx5s87u7L9Owfvd7dvsAS1e7uezmwWyDLOCqFNtU1NBJKusdJwzKjBXlVHEC2UkbhVtjW8oraiQreJWSCx9Y62luCaeTcHFfu82xa9hfFuv4pD68aSmTJGaEU7YSF3uKZtizsl5vU1hY9KPJljv5OmdPL2Xx34BVwVh-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371931413</pqid></control><display><type>article</type><title>Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm</title><source>Business Source Complete</source><creator>Liao, Shangchun ; Li, Gongfa ; Li, Jiahan ; Jiang, Du ; Jiang, Guozhang ; Sun, Ying ; Tao, Bo ; Zhao, Haoyi ; Chen, Disi</creator><contributor>Farouk, Ahmed</contributor><creatorcontrib>Liao, Shangchun ; Li, Gongfa ; Li, Jiahan ; Jiang, Du ; Jiang, Guozhang ; Sun, Ying ; Tao, Bo ; Zhao, Haoyi ; Chen, Disi ; Farouk, Ahmed</creatorcontrib><description>SEMG signal is a bioelectrical signal produced by the contraction of human surface muscles. Human-computer interaction based on SEMG signal is of great significance in the field of rehabilitation robots. In this study, a feature extraction method of SEMG signal based on activated muscle regionis proposed, which is based on the study of activated muscle regionin human forearm and hand movement. At the same time, the main research object of this study is the multi-object intergroup SEMG signal which is closer to the practical application environment. The new feature extracted is fused with the sample entropy feature and the wavelength feature to obtain better signal features. After combining the fusion feature with KNN algorithm, the hand motion pattern recognition and classification between multi-object groups is carried out. The combination of the fusion feature and KNN classification algorithm can achieve 91.05% in the multi-object intergroup hand motion classification. This method has lower computational cost without expensive hardware support, and improves the robustness of hand motion recognition based on EMG signals.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-179558</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Bioelectricity ; Classification ; Feature extraction ; Forearm ; Gesture recognition ; Human motion ; Motion perception ; Muscles ; Object recognition ; Pattern recognition ; Rehabilitation robots ; Robustness (mathematics)</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.38 (3), p.2725-2735</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-2e7db9251638c6e443250478a71f57a60d72dafb228256d74c5606fbccc2091f3</citedby><cites>FETCH-LOGICAL-c303t-2e7db9251638c6e443250478a71f57a60d72dafb228256d74c5606fbccc2091f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Farouk, Ahmed</contributor><creatorcontrib>Liao, Shangchun</creatorcontrib><creatorcontrib>Li, Gongfa</creatorcontrib><creatorcontrib>Li, Jiahan</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Jiang, Guozhang</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Zhao, Haoyi</creatorcontrib><creatorcontrib>Chen, Disi</creatorcontrib><title>Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm</title><title>Journal of intelligent &amp; fuzzy systems</title><description>SEMG signal is a bioelectrical signal produced by the contraction of human surface muscles. Human-computer interaction based on SEMG signal is of great significance in the field of rehabilitation robots. In this study, a feature extraction method of SEMG signal based on activated muscle regionis proposed, which is based on the study of activated muscle regionin human forearm and hand movement. At the same time, the main research object of this study is the multi-object intergroup SEMG signal which is closer to the practical application environment. The new feature extracted is fused with the sample entropy feature and the wavelength feature to obtain better signal features. After combining the fusion feature with KNN algorithm, the hand motion pattern recognition and classification between multi-object groups is carried out. The combination of the fusion feature and KNN classification algorithm can achieve 91.05% in the multi-object intergroup hand motion classification. This method has lower computational cost without expensive hardware support, and improves the robustness of hand motion recognition based on EMG signals.</description><subject>Algorithms</subject><subject>Bioelectricity</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Forearm</subject><subject>Gesture recognition</subject><subject>Human motion</subject><subject>Motion perception</subject><subject>Muscles</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Rehabilitation robots</subject><subject>Robustness (mathematics)</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsn_0DAo0Tznd2jFD-qtR7Ui5eQzSZrSrupSRbx37u1nmaY92FmeAA4J_iKUcauH-d3r4ioWojqAExIpQSqaqkOxx5Ljgjl8hic5LzCmChB8QR8PA_rElBsVs4WGPriUpfisIWdy2VIDiZnY9eHEmIPbdw0oXct_A7lE_oh74bemT_Q9C18Wi6hWXcxjfnmFBx5s87u7L9Owfvd7dvsAS1e7uezmwWyDLOCqFNtU1NBJKusdJwzKjBXlVHEC2UkbhVtjW8oraiQreJWSCx9Y62luCaeTcHFfu82xa9hfFuv4pD68aSmTJGaEU7YSF3uKZtizsl5vU1hY9KPJljv5OmdPL2Xx34BVwVh-Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Liao, Shangchun</creator><creator>Li, Gongfa</creator><creator>Li, Jiahan</creator><creator>Jiang, Du</creator><creator>Jiang, Guozhang</creator><creator>Sun, Ying</creator><creator>Tao, Bo</creator><creator>Zhao, Haoyi</creator><creator>Chen, Disi</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm</title><author>Liao, Shangchun ; Li, Gongfa ; Li, Jiahan ; Jiang, Du ; Jiang, Guozhang ; Sun, Ying ; Tao, Bo ; Zhao, Haoyi ; Chen, Disi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-2e7db9251638c6e443250478a71f57a60d72dafb228256d74c5606fbccc2091f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bioelectricity</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Forearm</topic><topic>Gesture recognition</topic><topic>Human motion</topic><topic>Motion perception</topic><topic>Muscles</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Rehabilitation robots</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Shangchun</creatorcontrib><creatorcontrib>Li, Gongfa</creatorcontrib><creatorcontrib>Li, Jiahan</creatorcontrib><creatorcontrib>Jiang, Du</creatorcontrib><creatorcontrib>Jiang, Guozhang</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Tao, Bo</creatorcontrib><creatorcontrib>Zhao, Haoyi</creatorcontrib><creatorcontrib>Chen, Disi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Shangchun</au><au>Li, Gongfa</au><au>Li, Jiahan</au><au>Jiang, Du</au><au>Jiang, Guozhang</au><au>Sun, Ying</au><au>Tao, Bo</au><au>Zhao, Haoyi</au><au>Chen, Disi</au><au>Farouk, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>3</issue><spage>2725</spage><epage>2735</epage><pages>2725-2735</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>SEMG signal is a bioelectrical signal produced by the contraction of human surface muscles. Human-computer interaction based on SEMG signal is of great significance in the field of rehabilitation robots. In this study, a feature extraction method of SEMG signal based on activated muscle regionis proposed, which is based on the study of activated muscle regionin human forearm and hand movement. At the same time, the main research object of this study is the multi-object intergroup SEMG signal which is closer to the practical application environment. The new feature extracted is fused with the sample entropy feature and the wavelength feature to obtain better signal features. After combining the fusion feature with KNN algorithm, the hand motion pattern recognition and classification between multi-object groups is carried out. The combination of the fusion feature and KNN classification algorithm can achieve 91.05% in the multi-object intergroup hand motion classification. This method has lower computational cost without expensive hardware support, and improves the robustness of hand motion recognition based on EMG signals.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-179558</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.38 (3), p.2725-2735
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2371931413
source Business Source Complete
subjects Algorithms
Bioelectricity
Classification
Feature extraction
Forearm
Gesture recognition
Human motion
Motion perception
Muscles
Object recognition
Pattern recognition
Rehabilitation robots
Robustness (mathematics)
title Multi-object intergroup gesture recognition combined with fusion feature and KNN algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-object%20intergroup%20gesture%20recognition%20combined%20with%20fusion%20feature%20and%20KNN%20algorithm&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Liao,%20Shangchun&rft.date=2020-01-01&rft.volume=38&rft.issue=3&rft.spage=2725&rft.epage=2735&rft.pages=2725-2735&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-179558&rft_dat=%3Cproquest_cross%3E2371931413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371931413&rft_id=info:pmid/&rfr_iscdi=true