An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture

This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-04, Vol.361, p.112744, Article 112744
Hauptverfasser: Noii, Nima, Aldakheel, Fadi, Wick, Thomas, Wriggers, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112744
container_title Computer methods in applied mechanics and engineering
container_volume 361
creator Noii, Nima
Aldakheel, Fadi
Wick, Thomas
Wriggers, Peter
description This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments. •A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.
doi_str_mv 10.1016/j.cma.2019.112744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371766187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519306346</els_id><sourcerecordid>2371766187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsP4C3geWuyf7N4KsV_UPCiNyFMZydtynazJtuCN9_BN_RJTFnPzmWY4ftmPn6MXUsxk0KWt9sZ7mCWClnPpEyrPD9hE6mqOkllpk7ZRIi8SCqVFufsIoStiKVkOmHv845DA_1gD8TXrVtB-_P13TqElkPfewe44cZ53m8gUGIstQ3fuYZa2625Mxw6G9zgXW-Rr7wdhpa48YDD3tMlOzPQBrr661P29nD_unhKli-Pz4v5MsEsLYYEFZZSiFWeK2rqcqVElQusChHXChRkDZDKsZYoSlXUgKlBMAZMEydFlE3ZzXg35v3YUxj01u19F1_qNKtkVcY7VVTJUYXeheDJ6N7bHfhPLYU-QtRbHSHqI0Q9Qoyeu9FDMf7BktcBLXVIjfWEg26c_cf9C4Ghe88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371766187</pqid></control><display><type>article</type><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><source>Access via ScienceDirect (Elsevier)</source><creator>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</creator><creatorcontrib>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</creatorcontrib><description>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments. •A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112744</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic brittle fracture ; Boundary conditions ; Brittle fracture ; Bulk density ; Global–local formulation ; Mathematical analysis ; Mortars (material) ; Non-matching dual mortar method ; Phase-field modeling ; predictor–corrector adaptivity ; Robin-type boundary condition ; Tensors ; Topology</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112744, Article 112744</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</citedby><cites>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</cites><orcidid>0000-0003-4074-4576 ; 0000-0002-1102-6332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.112744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Noii, Nima</creatorcontrib><creatorcontrib>Aldakheel, Fadi</creatorcontrib><creatorcontrib>Wick, Thomas</creatorcontrib><creatorcontrib>Wriggers, Peter</creatorcontrib><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><title>Computer methods in applied mechanics and engineering</title><description>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments. •A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</description><subject>Anisotropic brittle fracture</subject><subject>Boundary conditions</subject><subject>Brittle fracture</subject><subject>Bulk density</subject><subject>Global–local formulation</subject><subject>Mathematical analysis</subject><subject>Mortars (material)</subject><subject>Non-matching dual mortar method</subject><subject>Phase-field modeling</subject><subject>predictor–corrector adaptivity</subject><subject>Robin-type boundary condition</subject><subject>Tensors</subject><subject>Topology</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsP4C3geWuyf7N4KsV_UPCiNyFMZydtynazJtuCN9_BN_RJTFnPzmWY4ftmPn6MXUsxk0KWt9sZ7mCWClnPpEyrPD9hE6mqOkllpk7ZRIi8SCqVFufsIoStiKVkOmHv845DA_1gD8TXrVtB-_P13TqElkPfewe44cZ53m8gUGIstQ3fuYZa2625Mxw6G9zgXW-Rr7wdhpa48YDD3tMlOzPQBrr661P29nD_unhKli-Pz4v5MsEsLYYEFZZSiFWeK2rqcqVElQusChHXChRkDZDKsZYoSlXUgKlBMAZMEydFlE3ZzXg35v3YUxj01u19F1_qNKtkVcY7VVTJUYXeheDJ6N7bHfhPLYU-QtRbHSHqI0Q9Qoyeu9FDMf7BktcBLXVIjfWEg26c_cf9C4Ghe88</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Noii, Nima</creator><creator>Aldakheel, Fadi</creator><creator>Wick, Thomas</creator><creator>Wriggers, Peter</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-4576</orcidid><orcidid>https://orcid.org/0000-0002-1102-6332</orcidid></search><sort><creationdate>20200401</creationdate><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><author>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic brittle fracture</topic><topic>Boundary conditions</topic><topic>Brittle fracture</topic><topic>Bulk density</topic><topic>Global–local formulation</topic><topic>Mathematical analysis</topic><topic>Mortars (material)</topic><topic>Non-matching dual mortar method</topic><topic>Phase-field modeling</topic><topic>predictor–corrector adaptivity</topic><topic>Robin-type boundary condition</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noii, Nima</creatorcontrib><creatorcontrib>Aldakheel, Fadi</creatorcontrib><creatorcontrib>Wick, Thomas</creatorcontrib><creatorcontrib>Wriggers, Peter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noii, Nima</au><au>Aldakheel, Fadi</au><au>Wick, Thomas</au><au>Wriggers, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>361</volume><spage>112744</spage><pages>112744-</pages><artnum>112744</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments. •A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112744</doi><orcidid>https://orcid.org/0000-0003-4074-4576</orcidid><orcidid>https://orcid.org/0000-0002-1102-6332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112744, Article 112744
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2371766187
source Access via ScienceDirect (Elsevier)
subjects Anisotropic brittle fracture
Boundary conditions
Brittle fracture
Bulk density
Global–local formulation
Mathematical analysis
Mortars (material)
Non-matching dual mortar method
Phase-field modeling
predictor–corrector adaptivity
Robin-type boundary condition
Tensors
Topology
title An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20global%E2%80%93local%20approach%20for%20phase-field%20modeling%20of%20anisotropic%20brittle%20fracture&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Noii,%20Nima&rft.date=2020-04-01&rft.volume=361&rft.spage=112744&rft.pages=112744-&rft.artnum=112744&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112744&rft_dat=%3Cproquest_cross%3E2371766187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371766187&rft_id=info:pmid/&rft_els_id=S0045782519306346&rfr_iscdi=true