An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture
This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized c...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-04, Vol.361, p.112744, Article 112744 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112744 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 361 |
creator | Noii, Nima Aldakheel, Fadi Wick, Thomas Wriggers, Peter |
description | This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments.
•A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains. |
doi_str_mv | 10.1016/j.cma.2019.112744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371766187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519306346</els_id><sourcerecordid>2371766187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsP4C3geWuyf7N4KsV_UPCiNyFMZydtynazJtuCN9_BN_RJTFnPzmWY4ftmPn6MXUsxk0KWt9sZ7mCWClnPpEyrPD9hE6mqOkllpk7ZRIi8SCqVFufsIoStiKVkOmHv845DA_1gD8TXrVtB-_P13TqElkPfewe44cZ53m8gUGIstQ3fuYZa2625Mxw6G9zgXW-Rr7wdhpa48YDD3tMlOzPQBrr661P29nD_unhKli-Pz4v5MsEsLYYEFZZSiFWeK2rqcqVElQusChHXChRkDZDKsZYoSlXUgKlBMAZMEydFlE3ZzXg35v3YUxj01u19F1_qNKtkVcY7VVTJUYXeheDJ6N7bHfhPLYU-QtRbHSHqI0Q9Qoyeu9FDMf7BktcBLXVIjfWEg26c_cf9C4Ghe88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371766187</pqid></control><display><type>article</type><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><source>Access via ScienceDirect (Elsevier)</source><creator>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</creator><creatorcontrib>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</creatorcontrib><description>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments.
•A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.112744</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic brittle fracture ; Boundary conditions ; Brittle fracture ; Bulk density ; Global–local formulation ; Mathematical analysis ; Mortars (material) ; Non-matching dual mortar method ; Phase-field modeling ; predictor–corrector adaptivity ; Robin-type boundary condition ; Tensors ; Topology</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112744, Article 112744</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</citedby><cites>FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</cites><orcidid>0000-0003-4074-4576 ; 0000-0002-1102-6332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.112744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Noii, Nima</creatorcontrib><creatorcontrib>Aldakheel, Fadi</creatorcontrib><creatorcontrib>Wick, Thomas</creatorcontrib><creatorcontrib>Wriggers, Peter</creatorcontrib><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><title>Computer methods in applied mechanics and engineering</title><description>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments.
•A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</description><subject>Anisotropic brittle fracture</subject><subject>Boundary conditions</subject><subject>Brittle fracture</subject><subject>Bulk density</subject><subject>Global–local formulation</subject><subject>Mathematical analysis</subject><subject>Mortars (material)</subject><subject>Non-matching dual mortar method</subject><subject>Phase-field modeling</subject><subject>predictor–corrector adaptivity</subject><subject>Robin-type boundary condition</subject><subject>Tensors</subject><subject>Topology</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsP4C3geWuyf7N4KsV_UPCiNyFMZydtynazJtuCN9_BN_RJTFnPzmWY4ftmPn6MXUsxk0KWt9sZ7mCWClnPpEyrPD9hE6mqOkllpk7ZRIi8SCqVFufsIoStiKVkOmHv845DA_1gD8TXrVtB-_P13TqElkPfewe44cZ53m8gUGIstQ3fuYZa2625Mxw6G9zgXW-Rr7wdhpa48YDD3tMlOzPQBrr661P29nD_unhKli-Pz4v5MsEsLYYEFZZSiFWeK2rqcqVElQusChHXChRkDZDKsZYoSlXUgKlBMAZMEydFlE3ZzXg35v3YUxj01u19F1_qNKtkVcY7VVTJUYXeheDJ6N7bHfhPLYU-QtRbHSHqI0Q9Qoyeu9FDMf7BktcBLXVIjfWEg26c_cf9C4Ghe88</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Noii, Nima</creator><creator>Aldakheel, Fadi</creator><creator>Wick, Thomas</creator><creator>Wriggers, Peter</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-4576</orcidid><orcidid>https://orcid.org/0000-0002-1102-6332</orcidid></search><sort><creationdate>20200401</creationdate><title>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</title><author>Noii, Nima ; Aldakheel, Fadi ; Wick, Thomas ; Wriggers, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c8c6100b448ed96b80740c750c618a8a3dae84c91c06859ac2fcaffafd8598ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic brittle fracture</topic><topic>Boundary conditions</topic><topic>Brittle fracture</topic><topic>Bulk density</topic><topic>Global–local formulation</topic><topic>Mathematical analysis</topic><topic>Mortars (material)</topic><topic>Non-matching dual mortar method</topic><topic>Phase-field modeling</topic><topic>predictor–corrector adaptivity</topic><topic>Robin-type boundary condition</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noii, Nima</creatorcontrib><creatorcontrib>Aldakheel, Fadi</creatorcontrib><creatorcontrib>Wick, Thomas</creatorcontrib><creatorcontrib>Wriggers, Peter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noii, Nima</au><au>Aldakheel, Fadi</au><au>Wick, Thomas</au><au>Wriggers, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>361</volume><spage>112744</spage><pages>112744-</pages><artnum>112744</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work addresses an efficient Global–Local approach supplemented with predictor–corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A Global–Local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive Global–Local approach, where a predictor–corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments.
•A phase-field formulation of fracture in anisotropic solids.•A Global–Local approach to capture the full local resolution at the global level.•Robin-type boundary conditions between the local and the global domains.•Non-matching FE discretization to obtain sufficient regularity along interface.•Predictor–corrector adaptive scheme for dynamically updated of the local domains.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.112744</doi><orcidid>https://orcid.org/0000-0003-4074-4576</orcidid><orcidid>https://orcid.org/0000-0002-1102-6332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2020-04, Vol.361, p.112744, Article 112744 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2371766187 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anisotropic brittle fracture Boundary conditions Brittle fracture Bulk density Global–local formulation Mathematical analysis Mortars (material) Non-matching dual mortar method Phase-field modeling predictor–corrector adaptivity Robin-type boundary condition Tensors Topology |
title | An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20global%E2%80%93local%20approach%20for%20phase-field%20modeling%20of%20anisotropic%20brittle%20fracture&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Noii,%20Nima&rft.date=2020-04-01&rft.volume=361&rft.spage=112744&rft.pages=112744-&rft.artnum=112744&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.112744&rft_dat=%3Cproquest_cross%3E2371766187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371766187&rft_id=info:pmid/&rft_els_id=S0045782519306346&rfr_iscdi=true |