Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling

Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2020-02, Vol.192, p.116719, Article 116719
Hauptverfasser: Badiei, Z., Eslami, M., Jafarpur, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116719
container_title Energy (Oxford)
container_volume 192
creator Badiei, Z.
Eslami, M.
Jafarpur, K.
description Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynamics are simulated in each component by numerical solving of energy and momentum equations. Fins are also incorporated into the PCM and the resulting temperature distributions are analyzed during two different summer and winter days in Shiraz, Iran. Four different types of PCM with various melting temperatures are considered in this research. Results show that although the system with PCM has lower output temperatures in the morning, hot water can be supplied in a longer duration in the evening while discharging. Also, the average collector efficiency is increased from 33% to 46% in the summer day for the PCM with minimum melting temperature. In addition, incorporation of fins increases the storage capacity especially in PCMs with higher melting temperatures. However, heat dissipation into the ambient is larger in the finned system during the discharge in the afternoon and can reduce the efficiency marginally. •CFD modeling of flat plate collectors integrated with PCM is presented.•Variable and realistic ambient conditions are considered continuously.•Transient 3D temperature and velocity distributions are calculated in different parts.•Different PCMs are studied in summer and winter weather conditions.•Effects of incorporation of fins into the PCM are studied.
doi_str_mv 10.1016/j.energy.2019.116719
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371765886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219324144</els_id><sourcerecordid>2371765886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-81931ab9b2b5075bb218e5fe8c8ead76345f2998204d3921630ea18829e689e63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywssU7xIw-bBVJVKCBVggWsLSeZpI4Su9gpqOLncRXWLGZmMffO6B6ErilZUELz224BFnx7WDBC5YLSvKDyBM2oKHiSFyI7RTPCc5JkacrO0UUIHSEkE1LO0M8b-Mb5QdsKsBl23n3BAHYM2FgcXK89bno94l1sgCvX91CNzgdcHqJihNbr0dgWf5txi3dbHaJoq20LeIgGb3QfsLY1bowNd3iJV-sHPLga-mi6RGdN3MPV35yjj_Xj--o52bw-vayWm6TiPB0TQSWnupQlKzNSZGXJqICsAVEJ0HWR8zRrmJSCkbTmktGcE9BUCCYhF7H4HN1Md2O6zz2EUXVu7218qRgvaJFnQhxV6aSqvAvBQ6N23gzaHxQl6ohZdWrCrI6Y1YQ52u4nG8QEXwa8CpWBSLM2PqJStTP_H_gF6ziIow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371765886</pqid></control><display><type>article</type><title>Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Badiei, Z. ; Eslami, M. ; Jafarpur, K.</creator><creatorcontrib>Badiei, Z. ; Eslami, M. ; Jafarpur, K.</creatorcontrib><description>Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynamics are simulated in each component by numerical solving of energy and momentum equations. Fins are also incorporated into the PCM and the resulting temperature distributions are analyzed during two different summer and winter days in Shiraz, Iran. Four different types of PCM with various melting temperatures are considered in this research. Results show that although the system with PCM has lower output temperatures in the morning, hot water can be supplied in a longer duration in the evening while discharging. Also, the average collector efficiency is increased from 33% to 46% in the summer day for the PCM with minimum melting temperature. In addition, incorporation of fins increases the storage capacity especially in PCMs with higher melting temperatures. However, heat dissipation into the ambient is larger in the finned system during the discharge in the afternoon and can reduce the efficiency marginally. •CFD modeling of flat plate collectors integrated with PCM is presented.•Variable and realistic ambient conditions are considered continuously.•Transient 3D temperature and velocity distributions are calculated in different parts.•Different PCMs are studied in summer and winter weather conditions.•Effects of incorporation of fins into the PCM are studied.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.116719</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accumulators ; CFD ; Collectors ; Computational fluid dynamics ; Computer simulation ; Discharge ; Energy storage ; Fin ; Fins ; Flat plates ; Fluid dynamics ; Heat transfer ; Hydrodynamics ; Mathematical models ; Melt temperature ; Melting ; Phase change material ; Phase change materials ; Solar energy ; Solar flat plate collector ; Storage capacity ; Summer ; Thermal energy ; Three dimensional models</subject><ispartof>Energy (Oxford), 2020-02, Vol.192, p.116719, Article 116719</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-81931ab9b2b5075bb218e5fe8c8ead76345f2998204d3921630ea18829e689e63</citedby><cites>FETCH-LOGICAL-c334t-81931ab9b2b5075bb218e5fe8c8ead76345f2998204d3921630ea18829e689e63</cites><orcidid>0000-0002-9246-5328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.116719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Badiei, Z.</creatorcontrib><creatorcontrib>Eslami, M.</creatorcontrib><creatorcontrib>Jafarpur, K.</creatorcontrib><title>Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling</title><title>Energy (Oxford)</title><description>Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynamics are simulated in each component by numerical solving of energy and momentum equations. Fins are also incorporated into the PCM and the resulting temperature distributions are analyzed during two different summer and winter days in Shiraz, Iran. Four different types of PCM with various melting temperatures are considered in this research. Results show that although the system with PCM has lower output temperatures in the morning, hot water can be supplied in a longer duration in the evening while discharging. Also, the average collector efficiency is increased from 33% to 46% in the summer day for the PCM with minimum melting temperature. In addition, incorporation of fins increases the storage capacity especially in PCMs with higher melting temperatures. However, heat dissipation into the ambient is larger in the finned system during the discharge in the afternoon and can reduce the efficiency marginally. •CFD modeling of flat plate collectors integrated with PCM is presented.•Variable and realistic ambient conditions are considered continuously.•Transient 3D temperature and velocity distributions are calculated in different parts.•Different PCMs are studied in summer and winter weather conditions.•Effects of incorporation of fins into the PCM are studied.</description><subject>Accumulators</subject><subject>CFD</subject><subject>Collectors</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Discharge</subject><subject>Energy storage</subject><subject>Fin</subject><subject>Fins</subject><subject>Flat plates</subject><subject>Fluid dynamics</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Melt temperature</subject><subject>Melting</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Solar energy</subject><subject>Solar flat plate collector</subject><subject>Storage capacity</subject><subject>Summer</subject><subject>Thermal energy</subject><subject>Three dimensional models</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywssU7xIw-bBVJVKCBVggWsLSeZpI4Su9gpqOLncRXWLGZmMffO6B6ErilZUELz224BFnx7WDBC5YLSvKDyBM2oKHiSFyI7RTPCc5JkacrO0UUIHSEkE1LO0M8b-Mb5QdsKsBl23n3BAHYM2FgcXK89bno94l1sgCvX91CNzgdcHqJihNbr0dgWf5txi3dbHaJoq20LeIgGb3QfsLY1bowNd3iJV-sHPLga-mi6RGdN3MPV35yjj_Xj--o52bw-vayWm6TiPB0TQSWnupQlKzNSZGXJqICsAVEJ0HWR8zRrmJSCkbTmktGcE9BUCCYhF7H4HN1Md2O6zz2EUXVu7218qRgvaJFnQhxV6aSqvAvBQ6N23gzaHxQl6ohZdWrCrI6Y1YQ52u4nG8QEXwa8CpWBSLM2PqJStTP_H_gF6ziIow</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Badiei, Z.</creator><creator>Eslami, M.</creator><creator>Jafarpur, K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9246-5328</orcidid></search><sort><creationdate>20200201</creationdate><title>Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling</title><author>Badiei, Z. ; Eslami, M. ; Jafarpur, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-81931ab9b2b5075bb218e5fe8c8ead76345f2998204d3921630ea18829e689e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulators</topic><topic>CFD</topic><topic>Collectors</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Discharge</topic><topic>Energy storage</topic><topic>Fin</topic><topic>Fins</topic><topic>Flat plates</topic><topic>Fluid dynamics</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Melt temperature</topic><topic>Melting</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Solar energy</topic><topic>Solar flat plate collector</topic><topic>Storage capacity</topic><topic>Summer</topic><topic>Thermal energy</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badiei, Z.</creatorcontrib><creatorcontrib>Eslami, M.</creatorcontrib><creatorcontrib>Jafarpur, K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badiei, Z.</au><au>Eslami, M.</au><au>Jafarpur, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>192</volume><spage>116719</spage><pages>116719-</pages><artnum>116719</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynamics are simulated in each component by numerical solving of energy and momentum equations. Fins are also incorporated into the PCM and the resulting temperature distributions are analyzed during two different summer and winter days in Shiraz, Iran. Four different types of PCM with various melting temperatures are considered in this research. Results show that although the system with PCM has lower output temperatures in the morning, hot water can be supplied in a longer duration in the evening while discharging. Also, the average collector efficiency is increased from 33% to 46% in the summer day for the PCM with minimum melting temperature. In addition, incorporation of fins increases the storage capacity especially in PCMs with higher melting temperatures. However, heat dissipation into the ambient is larger in the finned system during the discharge in the afternoon and can reduce the efficiency marginally. •CFD modeling of flat plate collectors integrated with PCM is presented.•Variable and realistic ambient conditions are considered continuously.•Transient 3D temperature and velocity distributions are calculated in different parts.•Different PCMs are studied in summer and winter weather conditions.•Effects of incorporation of fins into the PCM are studied.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.116719</doi><orcidid>https://orcid.org/0000-0002-9246-5328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-02, Vol.192, p.116719, Article 116719
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2371765886
source Access via ScienceDirect (Elsevier)
subjects Accumulators
CFD
Collectors
Computational fluid dynamics
Computer simulation
Discharge
Energy storage
Fin
Fins
Flat plates
Fluid dynamics
Heat transfer
Hydrodynamics
Mathematical models
Melt temperature
Melting
Phase change material
Phase change materials
Solar energy
Solar flat plate collector
Storage capacity
Summer
Thermal energy
Three dimensional models
title Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20improvements%20in%20solar%20flat%20plate%20collectors%20by%20integrating%20with%20phase%20change%20materials%20and%20fins:%20A%20CFD%20modeling&rft.jtitle=Energy%20(Oxford)&rft.au=Badiei,%20Z.&rft.date=2020-02-01&rft.volume=192&rft.spage=116719&rft.pages=116719-&rft.artnum=116719&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.116719&rft_dat=%3Cproquest_cross%3E2371765886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371765886&rft_id=info:pmid/&rft_els_id=S0360544219324144&rfr_iscdi=true