Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III

This paper is concerned with the well‐posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III. We first obtain the well‐posedness of the system by using semigroup method. We then investigate the asymptotic behaviour of the system through the perturbed ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-04, Vol.43 (6), p.3148-3166
Hauptverfasser: Liu, Wenjun, Luan, Yue, Liu, Yadong, Li, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3166
container_issue 6
container_start_page 3148
container_title Mathematical methods in the applied sciences
container_volume 43
creator Liu, Wenjun
Luan, Yue
Liu, Yadong
Li, Gang
description This paper is concerned with the well‐posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III. We first obtain the well‐posedness of the system by using semigroup method. We then investigate the asymptotic behaviour of the system through the perturbed energy method. We prove that the energy of system decays exponentially in the case of equal wave speeds and decays polynomially in the case of nonequal wave speeds. Under the case of nonequal wave speeds, we also investigate the lack of exponential stability of the system.
doi_str_mv 10.1002/mma.6108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371543669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371543669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-b4bb31dca5824062a073ac7e271bf2312b733a6cbc5228e1e0bc1e4693f33f983</originalsourceid><addsrcrecordid>eNp10M1Kw0AUhuFBFKxV8BIG3LhJnTOT5mdZij-BFjeKKxnOTE8wJcnEzBTJzkvwGr0SU-vW1dk8nA9exi5BzEAIedM0OEtAZEdsAiLPI4jT5JhNBKQiiiXEp-zM-60QIgOQE_b6QnX9_fnVOU-blrzn2G44-qHpgguV5T6gqeoqDDw4jrzGpmox0IYbwoZXLQ9v1DeOavQj3ztX8jB0xIuiOGcnJdaeLv7ulD3f3T4tH6LV432xXKwiK3OVRSY2RsHG4jyTsUgkilShTUmmYEqpQJpUKUyssXMpMwISxgLFSa5Kpco8U1N2dfjb9e59Rz7ordv17TippUphHqtkxFN2fVC2d973VOqurxrsBw1C7-PpMZ7exxtpdKAfVU3Dv06v14tf_wOI4HEf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371543669</pqid></control><display><type>article</type><title>Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III</title><source>Wiley Journals</source><creator>Liu, Wenjun ; Luan, Yue ; Liu, Yadong ; Li, Gang</creator><creatorcontrib>Liu, Wenjun ; Luan, Yue ; Liu, Yadong ; Li, Gang</creatorcontrib><description>This paper is concerned with the well‐posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III. We first obtain the well‐posedness of the system by using semigroup method. We then investigate the asymptotic behaviour of the system through the perturbed energy method. We prove that the energy of system decays exponentially in the case of equal wave speeds and decays polynomially in the case of nonequal wave speeds. Under the case of nonequal wave speeds, we also investigate the lack of exponential stability of the system.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6108</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Asymptotic methods ; Asymptotic properties ; Decay rate ; exponential decay ; laminated beam ; polynomial decay ; Stability ; Thermoelasticity ; thermoelasticity of type III</subject><ispartof>Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3148-3166</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-b4bb31dca5824062a073ac7e271bf2312b733a6cbc5228e1e0bc1e4693f33f983</citedby><cites>FETCH-LOGICAL-c2938-b4bb31dca5824062a073ac7e271bf2312b733a6cbc5228e1e0bc1e4693f33f983</cites><orcidid>0000-0002-4500-6559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Luan, Yue</creatorcontrib><creatorcontrib>Liu, Yadong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><title>Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with the well‐posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III. We first obtain the well‐posedness of the system by using semigroup method. We then investigate the asymptotic behaviour of the system through the perturbed energy method. We prove that the energy of system decays exponentially in the case of equal wave speeds and decays polynomially in the case of nonequal wave speeds. Under the case of nonequal wave speeds, we also investigate the lack of exponential stability of the system.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Decay rate</subject><subject>exponential decay</subject><subject>laminated beam</subject><subject>polynomial decay</subject><subject>Stability</subject><subject>Thermoelasticity</subject><subject>thermoelasticity of type III</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AUhuFBFKxV8BIG3LhJnTOT5mdZij-BFjeKKxnOTE8wJcnEzBTJzkvwGr0SU-vW1dk8nA9exi5BzEAIedM0OEtAZEdsAiLPI4jT5JhNBKQiiiXEp-zM-60QIgOQE_b6QnX9_fnVOU-blrzn2G44-qHpgguV5T6gqeoqDDw4jrzGpmox0IYbwoZXLQ9v1DeOavQj3ztX8jB0xIuiOGcnJdaeLv7ulD3f3T4tH6LV432xXKwiK3OVRSY2RsHG4jyTsUgkilShTUmmYEqpQJpUKUyssXMpMwISxgLFSa5Kpco8U1N2dfjb9e59Rz7ordv17TippUphHqtkxFN2fVC2d973VOqurxrsBw1C7-PpMZ7exxtpdKAfVU3Dv06v14tf_wOI4HEf</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Liu, Wenjun</creator><creator>Luan, Yue</creator><creator>Liu, Yadong</creator><creator>Li, Gang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4500-6559</orcidid></search><sort><creationdate>202004</creationdate><title>Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III</title><author>Liu, Wenjun ; Luan, Yue ; Liu, Yadong ; Li, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-b4bb31dca5824062a073ac7e271bf2312b733a6cbc5228e1e0bc1e4693f33f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Decay rate</topic><topic>exponential decay</topic><topic>laminated beam</topic><topic>polynomial decay</topic><topic>Stability</topic><topic>Thermoelasticity</topic><topic>thermoelasticity of type III</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Luan, Yue</creatorcontrib><creatorcontrib>Liu, Yadong</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenjun</au><au>Luan, Yue</au><au>Liu, Yadong</au><au>Li, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-04</date><risdate>2020</risdate><volume>43</volume><issue>6</issue><spage>3148</spage><epage>3166</epage><pages>3148-3166</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with the well‐posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III. We first obtain the well‐posedness of the system by using semigroup method. We then investigate the asymptotic behaviour of the system through the perturbed energy method. We prove that the energy of system decays exponentially in the case of equal wave speeds and decays polynomially in the case of nonequal wave speeds. Under the case of nonequal wave speeds, we also investigate the lack of exponential stability of the system.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6108</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4500-6559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-04, Vol.43 (6), p.3148-3166
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2371543669
source Wiley Journals
subjects Asymptotic methods
Asymptotic properties
Decay rate
exponential decay
laminated beam
polynomial decay
Stability
Thermoelasticity
thermoelasticity of type III
title Well‐posedness and asymptotic stability to a laminated beam in thermoelasticity of type III
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well%E2%80%90posedness%20and%20asymptotic%20stability%20to%20a%20laminated%20beam%20in%20thermoelasticity%20of%20type%20III&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Liu,%20Wenjun&rft.date=2020-04&rft.volume=43&rft.issue=6&rft.spage=3148&rft.epage=3166&rft.pages=3148-3166&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6108&rft_dat=%3Cproquest_cross%3E2371543669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371543669&rft_id=info:pmid/&rfr_iscdi=true