Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees
Hydraulic redistribution (HR) of soil water through plant roots is widely described; however its extent, especially in temperate trees, remains unclear. Here, we quantified HR of five temperate tree species. We hypothesized that both, HR within a plant and into the soil increase with higher water‐po...
Gespeichert in:
Veröffentlicht in: | Functional ecology 2020-03, Vol.34 (3), p.561-574 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 3 |
container_start_page | 561 |
container_title | Functional ecology |
container_volume | 34 |
creator | Hafner, Benjamin D. Hesse, Benjamin D. Bauerle, Taryn L. Grams, Thorsten E. E. Sayer, Emma |
description | Hydraulic redistribution (HR) of soil water through plant roots is widely described; however its extent, especially in temperate trees, remains unclear. Here, we quantified HR of five temperate tree species. We hypothesized that both, HR within a plant and into the soil increase with higher water‐potential gradients, larger root conduit diameters and root‐xylem hydraulic conductivities as HR driving factors.
Saplings of conifer (Picea abies, Pseudotsuga menziesii), diffuse‐porous (Acer pseudoplatanus) and ring‐porous species (Castanea sativa, Quercus robur) were planted in split‐root systems, where one plant had its roots split between two pots with different water‐potential gradients (0.23–4.20 MPa). We quantified HR via deuterium labelling.
Species redistributed 0.39 ± 0.14 ml of water overnight (0.08 ± 0.01 ml/g root mass). Higher pre‐dawn water‐potential gradients, hydraulic conductivities and larger conduits significantly increased HR quantity. Hydraulic conductivity was the most important driving factor on HR amounts, within the plants (0.03 ± 0.01 ml/g) and into the soil (0.06 ± 0.01 ml/g).
Additional factors as soil‐root contact should be considered, especially when calculating water transfer into the soil. Nevertheless, trees maintaining high‐xylem hydraulic conductivity showed higher HR amounts, potentially making them valuable ‘silvicultural tools’ to improve plant water status.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article. |
doi_str_mv | 10.1111/1365-2435.13508 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371528455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371528455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3568-6aa34188bca7bcfc11b16716e28328f517def683b9ee1d292da5feaa0a5f2db43</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqUws1piJW1sx4k7oqoFpEosIEbLiS_UVRIX24GG_8H_JSEIsXHLnU7fe3d6CF2SeEb6mhOW8ogmjM8I47E4QpPfzTGaxDRdRCJJ2Sk6834Xx_GCUzpBn88qgMN7G6AJRlX4xSlt-vkaO2sDLmyjWxOwNx-AVaPH7aGroMbbTjvVVqYYqSKYNxM6rKF3rE0DOGwBw2Fwxrb8gzvQxgdn8jYY22DT4AD1Hlz_Cg4OwJ-jk1JVHi5--hQ9rVePy7to83B7v7zZRAXjqYhSpVhChMgLleVFWRCSkzQjKVDBqCg5yTSUqWD5AoBouqBa8RKUivtGdZ6wKboafffOvrbgg9zZ1jX9SUlZRjgVCec9NR-pwlnvHZRy70ytXCdJLIfs5ZC0HJKW39n3Cj4q3k0F3X-4XK-Wo-4LPBSKng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371528455</pqid></control><display><type>article</type><title>Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees</title><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Hafner, Benjamin D. ; Hesse, Benjamin D. ; Bauerle, Taryn L. ; Grams, Thorsten E. E. ; Sayer, Emma</creator><creatorcontrib>Hafner, Benjamin D. ; Hesse, Benjamin D. ; Bauerle, Taryn L. ; Grams, Thorsten E. E. ; Sayer, Emma</creatorcontrib><description>Hydraulic redistribution (HR) of soil water through plant roots is widely described; however its extent, especially in temperate trees, remains unclear. Here, we quantified HR of five temperate tree species. We hypothesized that both, HR within a plant and into the soil increase with higher water‐potential gradients, larger root conduit diameters and root‐xylem hydraulic conductivities as HR driving factors.
Saplings of conifer (Picea abies, Pseudotsuga menziesii), diffuse‐porous (Acer pseudoplatanus) and ring‐porous species (Castanea sativa, Quercus robur) were planted in split‐root systems, where one plant had its roots split between two pots with different water‐potential gradients (0.23–4.20 MPa). We quantified HR via deuterium labelling.
Species redistributed 0.39 ± 0.14 ml of water overnight (0.08 ± 0.01 ml/g root mass). Higher pre‐dawn water‐potential gradients, hydraulic conductivities and larger conduits significantly increased HR quantity. Hydraulic conductivity was the most important driving factor on HR amounts, within the plants (0.03 ± 0.01 ml/g) and into the soil (0.06 ± 0.01 ml/g).
Additional factors as soil‐root contact should be considered, especially when calculating water transfer into the soil. Nevertheless, trees maintaining high‐xylem hydraulic conductivity showed higher HR amounts, potentially making them valuable ‘silvicultural tools’ to improve plant water status.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.13508</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Conductivity ; Deuterium ; diffuse-porous temperate trees ; drought ; Hydraulic conductivity ; hydraulic redistribution driving factors ; hydraulic redistribution quantity ; Hydraulics ; Labeling ; Moisture content ; Plant roots ; Plant species ; Potential gradient ; ring-porous temperate trees ; Roots ; Silviculture ; Soil water ; Soils ; Species ; split‐root experiment ; stable water isotope labelling (2H/deuterium) ; temperate conifer trees ; Trees ; Water potential ; Water transfer ; Xylem</subject><ispartof>Functional ecology, 2020-03, Vol.34 (3), p.561-574</ispartof><rights>2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3568-6aa34188bca7bcfc11b16716e28328f517def683b9ee1d292da5feaa0a5f2db43</citedby><cites>FETCH-LOGICAL-c3568-6aa34188bca7bcfc11b16716e28328f517def683b9ee1d292da5feaa0a5f2db43</cites><orcidid>0000-0002-4355-8827 ; 0000-0003-2348-9200 ; 0000-0003-1113-9801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.13508$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.13508$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Hafner, Benjamin D.</creatorcontrib><creatorcontrib>Hesse, Benjamin D.</creatorcontrib><creatorcontrib>Bauerle, Taryn L.</creatorcontrib><creatorcontrib>Grams, Thorsten E. E.</creatorcontrib><creatorcontrib>Sayer, Emma</creatorcontrib><title>Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees</title><title>Functional ecology</title><description>Hydraulic redistribution (HR) of soil water through plant roots is widely described; however its extent, especially in temperate trees, remains unclear. Here, we quantified HR of five temperate tree species. We hypothesized that both, HR within a plant and into the soil increase with higher water‐potential gradients, larger root conduit diameters and root‐xylem hydraulic conductivities as HR driving factors.
Saplings of conifer (Picea abies, Pseudotsuga menziesii), diffuse‐porous (Acer pseudoplatanus) and ring‐porous species (Castanea sativa, Quercus robur) were planted in split‐root systems, where one plant had its roots split between two pots with different water‐potential gradients (0.23–4.20 MPa). We quantified HR via deuterium labelling.
Species redistributed 0.39 ± 0.14 ml of water overnight (0.08 ± 0.01 ml/g root mass). Higher pre‐dawn water‐potential gradients, hydraulic conductivities and larger conduits significantly increased HR quantity. Hydraulic conductivity was the most important driving factor on HR amounts, within the plants (0.03 ± 0.01 ml/g) and into the soil (0.06 ± 0.01 ml/g).
Additional factors as soil‐root contact should be considered, especially when calculating water transfer into the soil. Nevertheless, trees maintaining high‐xylem hydraulic conductivity showed higher HR amounts, potentially making them valuable ‘silvicultural tools’ to improve plant water status.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article.</description><subject>Conductivity</subject><subject>Deuterium</subject><subject>diffuse-porous temperate trees</subject><subject>drought</subject><subject>Hydraulic conductivity</subject><subject>hydraulic redistribution driving factors</subject><subject>hydraulic redistribution quantity</subject><subject>Hydraulics</subject><subject>Labeling</subject><subject>Moisture content</subject><subject>Plant roots</subject><subject>Plant species</subject><subject>Potential gradient</subject><subject>ring-porous temperate trees</subject><subject>Roots</subject><subject>Silviculture</subject><subject>Soil water</subject><subject>Soils</subject><subject>Species</subject><subject>split‐root experiment</subject><subject>stable water isotope labelling (2H/deuterium)</subject><subject>temperate conifer trees</subject><subject>Trees</subject><subject>Water potential</subject><subject>Water transfer</subject><subject>Xylem</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkDFPwzAQhS0EEqUws1piJW1sx4k7oqoFpEosIEbLiS_UVRIX24GG_8H_JSEIsXHLnU7fe3d6CF2SeEb6mhOW8ogmjM8I47E4QpPfzTGaxDRdRCJJ2Sk6834Xx_GCUzpBn88qgMN7G6AJRlX4xSlt-vkaO2sDLmyjWxOwNx-AVaPH7aGroMbbTjvVVqYYqSKYNxM6rKF3rE0DOGwBw2Fwxrb8gzvQxgdn8jYY22DT4AD1Hlz_Cg4OwJ-jk1JVHi5--hQ9rVePy7to83B7v7zZRAXjqYhSpVhChMgLleVFWRCSkzQjKVDBqCg5yTSUqWD5AoBouqBa8RKUivtGdZ6wKboafffOvrbgg9zZ1jX9SUlZRjgVCec9NR-pwlnvHZRy70ytXCdJLIfs5ZC0HJKW39n3Cj4q3k0F3X-4XK-Wo-4LPBSKng</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Hafner, Benjamin D.</creator><creator>Hesse, Benjamin D.</creator><creator>Bauerle, Taryn L.</creator><creator>Grams, Thorsten E. E.</creator><creator>Sayer, Emma</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-4355-8827</orcidid><orcidid>https://orcid.org/0000-0003-2348-9200</orcidid><orcidid>https://orcid.org/0000-0003-1113-9801</orcidid></search><sort><creationdate>202003</creationdate><title>Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees</title><author>Hafner, Benjamin D. ; Hesse, Benjamin D. ; Bauerle, Taryn L. ; Grams, Thorsten E. E. ; Sayer, Emma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3568-6aa34188bca7bcfc11b16716e28328f517def683b9ee1d292da5feaa0a5f2db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conductivity</topic><topic>Deuterium</topic><topic>diffuse-porous temperate trees</topic><topic>drought</topic><topic>Hydraulic conductivity</topic><topic>hydraulic redistribution driving factors</topic><topic>hydraulic redistribution quantity</topic><topic>Hydraulics</topic><topic>Labeling</topic><topic>Moisture content</topic><topic>Plant roots</topic><topic>Plant species</topic><topic>Potential gradient</topic><topic>ring-porous temperate trees</topic><topic>Roots</topic><topic>Silviculture</topic><topic>Soil water</topic><topic>Soils</topic><topic>Species</topic><topic>split‐root experiment</topic><topic>stable water isotope labelling (2H/deuterium)</topic><topic>temperate conifer trees</topic><topic>Trees</topic><topic>Water potential</topic><topic>Water transfer</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafner, Benjamin D.</creatorcontrib><creatorcontrib>Hesse, Benjamin D.</creatorcontrib><creatorcontrib>Bauerle, Taryn L.</creatorcontrib><creatorcontrib>Grams, Thorsten E. E.</creatorcontrib><creatorcontrib>Sayer, Emma</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hafner, Benjamin D.</au><au>Hesse, Benjamin D.</au><au>Bauerle, Taryn L.</au><au>Grams, Thorsten E. E.</au><au>Sayer, Emma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees</atitle><jtitle>Functional ecology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>34</volume><issue>3</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Hydraulic redistribution (HR) of soil water through plant roots is widely described; however its extent, especially in temperate trees, remains unclear. Here, we quantified HR of five temperate tree species. We hypothesized that both, HR within a plant and into the soil increase with higher water‐potential gradients, larger root conduit diameters and root‐xylem hydraulic conductivities as HR driving factors.
Saplings of conifer (Picea abies, Pseudotsuga menziesii), diffuse‐porous (Acer pseudoplatanus) and ring‐porous species (Castanea sativa, Quercus robur) were planted in split‐root systems, where one plant had its roots split between two pots with different water‐potential gradients (0.23–4.20 MPa). We quantified HR via deuterium labelling.
Species redistributed 0.39 ± 0.14 ml of water overnight (0.08 ± 0.01 ml/g root mass). Higher pre‐dawn water‐potential gradients, hydraulic conductivities and larger conduits significantly increased HR quantity. Hydraulic conductivity was the most important driving factor on HR amounts, within the plants (0.03 ± 0.01 ml/g) and into the soil (0.06 ± 0.01 ml/g).
Additional factors as soil‐root contact should be considered, especially when calculating water transfer into the soil. Nevertheless, trees maintaining high‐xylem hydraulic conductivity showed higher HR amounts, potentially making them valuable ‘silvicultural tools’ to improve plant water status.
A free Plain Language Summary can be found within the Supporting Information of this article.
A free Plain Language Summary can be found within the Supporting Information of this article.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.13508</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4355-8827</orcidid><orcidid>https://orcid.org/0000-0003-2348-9200</orcidid><orcidid>https://orcid.org/0000-0003-1113-9801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8463 |
ispartof | Functional ecology, 2020-03, Vol.34 (3), p.561-574 |
issn | 0269-8463 1365-2435 |
language | eng |
recordid | cdi_proquest_journals_2371528455 |
source | Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Conductivity Deuterium diffuse-porous temperate trees drought Hydraulic conductivity hydraulic redistribution driving factors hydraulic redistribution quantity Hydraulics Labeling Moisture content Plant roots Plant species Potential gradient ring-porous temperate trees Roots Silviculture Soil water Soils Species split‐root experiment stable water isotope labelling (2H/deuterium) temperate conifer trees Trees Water potential Water transfer Xylem |
title | Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20potential%20gradient,%20root%20conduit%20size%20and%20root%20xylem%20hydraulic%20conductivity%20determine%20the%20extent%20of%20hydraulic%20redistribution%20in%20temperate%20trees&rft.jtitle=Functional%20ecology&rft.au=Hafner,%20Benjamin%20D.&rft.date=2020-03&rft.volume=34&rft.issue=3&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.13508&rft_dat=%3Cproquest_cross%3E2371528455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371528455&rft_id=info:pmid/&rfr_iscdi=true |