Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables
Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variable...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Joo, Weonyoung Kim, Dongjun Shin, Seungjae Il-Chul Moon |
description | Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables are widely explored, for example, Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions. Meanwhile, other discrete distribution cases such as the Poisson, geometric, binomial, multinomial, negative binomial, etc. have not been explored. This paper proposes a generalized version of the Gumbel-Softmax estimator, which is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical. The proposed estimator utilizes the truncation of discrete random variables, the Gumbel-Softmax trick, and a special form of linear transformation. Our experiments consist of (1) synthetic examples and applications on VAE, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2371522739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371522739</sourcerecordid><originalsourceid>FETCH-proquest_journals_23715227393</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3GGgt2J3MWpfZOqOtXPUKI_NTMyNET59ED9Di4yzO-WYsAiE2yX4LsGCx90OaprDLIctExKqSDDlU8k0dL0fdkEoq2weNL1467CSZwAsfpMZgHe-nfR-y5SfpW0eB-BVNZzW_o5PYKPIrNu9ReYp_XLL1ubgdL8nD2edIPtSDHZ2ZVA0i32QAuTiI_6oPOrhAFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371522739</pqid></control><display><type>article</type><title>Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables</title><source>Free E- Journals</source><creator>Joo, Weonyoung ; Kim, Dongjun ; Shin, Seungjae ; Il-Chul Moon</creator><creatorcontrib>Joo, Weonyoung ; Kim, Dongjun ; Shin, Seungjae ; Il-Chul Moon</creatorcontrib><description>Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables are widely explored, for example, Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions. Meanwhile, other discrete distribution cases such as the Poisson, geometric, binomial, multinomial, negative binomial, etc. have not been explored. This paper proposes a generalized version of the Gumbel-Softmax estimator, which is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical. The proposed estimator utilizes the truncation of discrete random variables, the Gumbel-Softmax trick, and a special form of linear transformation. Our experiments consist of (1) synthetic examples and applications on VAE, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Linear transformations ; Neural networks ; Nodes ; Random variables</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Joo, Weonyoung</creatorcontrib><creatorcontrib>Kim, Dongjun</creatorcontrib><creatorcontrib>Shin, Seungjae</creatorcontrib><creatorcontrib>Il-Chul Moon</creatorcontrib><title>Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables</title><title>arXiv.org</title><description>Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables are widely explored, for example, Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions. Meanwhile, other discrete distribution cases such as the Poisson, geometric, binomial, multinomial, negative binomial, etc. have not been explored. This paper proposes a generalized version of the Gumbel-Softmax estimator, which is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical. The proposed estimator utilizes the truncation of discrete random variables, the Gumbel-Softmax trick, and a special form of linear transformation. Our experiments consist of (1) synthetic examples and applications on VAE, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.</description><subject>Continuity (mathematics)</subject><subject>Linear transformations</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KgkAURocgSMp3GGgt2J3MWpfZOqOtXPUKI_NTMyNET59ED9Di4yzO-WYsAiE2yX4LsGCx90OaprDLIctExKqSDDlU8k0dL0fdkEoq2weNL1467CSZwAsfpMZgHe-nfR-y5SfpW0eB-BVNZzW_o5PYKPIrNu9ReYp_XLL1ubgdL8nD2edIPtSDHZ2ZVA0i32QAuTiI_6oPOrhAFg</recordid><startdate>20230222</startdate><enddate>20230222</enddate><creator>Joo, Weonyoung</creator><creator>Kim, Dongjun</creator><creator>Shin, Seungjae</creator><creator>Il-Chul Moon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230222</creationdate><title>Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables</title><author>Joo, Weonyoung ; Kim, Dongjun ; Shin, Seungjae ; Il-Chul Moon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23715227393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuity (mathematics)</topic><topic>Linear transformations</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Joo, Weonyoung</creatorcontrib><creatorcontrib>Kim, Dongjun</creatorcontrib><creatorcontrib>Shin, Seungjae</creatorcontrib><creatorcontrib>Il-Chul Moon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joo, Weonyoung</au><au>Kim, Dongjun</au><au>Shin, Seungjae</au><au>Il-Chul Moon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables</atitle><jtitle>arXiv.org</jtitle><date>2023-02-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Estimating the gradients of stochastic nodes in stochastic computational graphs is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. Stochastic gradient estimators of discrete random variables are widely explored, for example, Gumbel-Softmax reparameterization trick for Bernoulli and categorical distributions. Meanwhile, other discrete distribution cases such as the Poisson, geometric, binomial, multinomial, negative binomial, etc. have not been explored. This paper proposes a generalized version of the Gumbel-Softmax estimator, which is able to reparameterize generic discrete distributions, not restricted to the Bernoulli and the categorical. The proposed estimator utilizes the truncation of discrete random variables, the Gumbel-Softmax trick, and a special form of linear transformation. Our experiments consist of (1) synthetic examples and applications on VAE, which show the efficacy of our methods; and (2) topic models, which demonstrate the value of the proposed estimation in practice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2371522739 |
source | Free E- Journals |
subjects | Continuity (mathematics) Linear transformations Neural networks Nodes Random variables |
title | Generalized Gumbel-Softmax Gradient Estimator for Generic Discrete Random Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Gumbel-Softmax%20Gradient%20Estimator%20for%20Generic%20Discrete%20Random%20Variables&rft.jtitle=arXiv.org&rft.au=Joo,%20Weonyoung&rft.date=2023-02-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2371522739%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371522739&rft_id=info:pmid/&rfr_iscdi=true |