VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge

This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for vide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-03
Hauptverfasser: Chen, Jiale, Xu, Tan, Shan, Chaowei, Liu, Sen, Chen, Zhibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Jiale
Xu, Tan
Shan, Chaowei
Liu, Sen
Chen, Zhibo
description This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for video frame reconstruction in VESR-Net. We conduct experiments to analyze the effectiveness of these designs in VESR-Net, which demonstrates the advantages of VESR-Net over previous state-of-the-art VESR methods. It is worth to mention that among more than thousands of participants for Youku video enhancement and super-resolution (Youku-VESR) challenge, our proposed VESR-Net beat other competitive methods and ranked the first place.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2371521549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371521549</sourcerecordid><originalsourceid>FETCH-proquest_journals_23715215493</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLnEmgBVFXgnFyAII6ESJPKOIr0vb_ddDd6Q73zJjDhQi8bcj5grla977v803Mo0g47FKmeead0Oyh6BDOkkhSC7karJGKwCi4KvuwUMoGFaTU1XTDJ5KBmhrI7YiTl6H--aSrhwGpxRWb3-tBo_vtkq0PaZEcvXFSL4vaVL2yE31WxUUcRDyIwp34T70BATZBFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371521549</pqid></control><display><type>article</type><title>VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge</title><source>Free E- Journals</source><creator>Chen, Jiale ; Xu, Tan ; Shan, Chaowei ; Liu, Sen ; Chen, Zhibo</creator><creatorcontrib>Chen, Jiale ; Xu, Tan ; Shan, Chaowei ; Liu, Sen ; Chen, Zhibo</creatorcontrib><description>This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for video frame reconstruction in VESR-Net. We conduct experiments to analyze the effectiveness of these designs in VESR-Net, which demonstrates the advantages of VESR-Net over previous state-of-the-art VESR methods. It is worth to mention that among more than thousands of participants for Youku video enhancement and super-resolution (Youku-VESR) challenge, our proposed VESR-Net beat other competitive methods and ranked the first place.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feature maps</subject><ispartof>arXiv.org, 2020-03</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Xu, Tan</creatorcontrib><creatorcontrib>Shan, Chaowei</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><title>VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge</title><title>arXiv.org</title><description>This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for video frame reconstruction in VESR-Net. We conduct experiments to analyze the effectiveness of these designs in VESR-Net, which demonstrates the advantages of VESR-Net over previous state-of-the-art VESR methods. It is worth to mention that among more than thousands of participants for Youku video enhancement and super-resolution (Youku-VESR) challenge, our proposed VESR-Net beat other competitive methods and ranked the first place.</description><subject>Feature maps</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLnEmgBVFXgnFyAII6ESJPKOIr0vb_ddDd6Q73zJjDhQi8bcj5grla977v803Mo0g47FKmeead0Oyh6BDOkkhSC7karJGKwCi4KvuwUMoGFaTU1XTDJ5KBmhrI7YiTl6H--aSrhwGpxRWb3-tBo_vtkq0PaZEcvXFSL4vaVL2yE31WxUUcRDyIwp34T70BATZBFA</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Chen, Jiale</creator><creator>Xu, Tan</creator><creator>Shan, Chaowei</creator><creator>Liu, Sen</creator><creator>Chen, Zhibo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200304</creationdate><title>VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge</title><author>Chen, Jiale ; Xu, Tan ; Shan, Chaowei ; Liu, Sen ; Chen, Zhibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23715215493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Feature maps</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Xu, Tan</creatorcontrib><creatorcontrib>Shan, Chaowei</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiale</au><au>Xu, Tan</au><au>Shan, Chaowei</au><au>Liu, Sen</au><au>Chen, Zhibo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge</atitle><jtitle>arXiv.org</jtitle><date>2020-03-04</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper introduces VESR-Net, a method for video enhancement and super-resolution (VESR). We design a separate non-local module to explore the relations among video frames and fuse video frames efficiently, and a channel attention residual block to capture the relations among feature maps for video frame reconstruction in VESR-Net. We conduct experiments to analyze the effectiveness of these designs in VESR-Net, which demonstrates the advantages of VESR-Net over previous state-of-the-art VESR methods. It is worth to mention that among more than thousands of participants for Youku video enhancement and super-resolution (Youku-VESR) challenge, our proposed VESR-Net beat other competitive methods and ranked the first place.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2371521549
source Free E- Journals
subjects Feature maps
title VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VESR-Net:%20The%20Winning%20Solution%20to%20Youku%20Video%20Enhancement%20and%20Super-Resolution%20Challenge&rft.jtitle=arXiv.org&rft.au=Chen,%20Jiale&rft.date=2020-03-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2371521549%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371521549&rft_id=info:pmid/&rfr_iscdi=true