Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses
The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detec...
Gespeichert in:
Veröffentlicht in: | Earth surface processes and landforms 2020-03, Vol.45 (3), p.736-755 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 755 |
---|---|
container_issue | 3 |
container_start_page | 736 |
container_title | Earth surface processes and landforms |
container_volume | 45 |
creator | Crema, Stefano Llena, Manel Calsamiglia, Aleix Estrany, Joan Marchi, Lorenzo Vericat, Damià Cavalli, Marco |
description | The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley & Sons, Ltd. ©2020 John Wiley & Sons, Ltd.
Key findings
A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs.
The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction
Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique |
doi_str_mv | 10.1002/esp.4739 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371370489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371370489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBqMpk2zUpkqD9QULD7cJu506bMTMZkRukz-NJmbLeu7uJ8HM79CLnmbMIZS-8xtJNMCnVCRpypWaLmQp6SEeNKJkoIeU4uQtgxxnk2VyPyk0NDbdOCbTrbbKitW---kBZ2YzuoaIfex4xCA9U-2PBAc1e34Ae2Q7Nt7GePgZbO0y9nC1raqorZHQ29L8Eg9WhcEzrfm866oaegG3S18-3W1dh5a47dGC7JWQlVwKvjHZPV02KVvyTLt-fX_HGZgOAzlUxBzKUxc5VloFAil8V0BikYNgVZwlpJyUvO00KligEypjhHvmYqjYIKJcbk5lAbPx3Gd3rneh83BJ0KyYVk0Uykbg-U8S4Ej6Vuva3B7zVnejCto2k9mI5ockC_bYX7fzm9-Hj_438B5K2Ckg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371370489</pqid></control><display><type>article</type><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</creator><creatorcontrib>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</creatorcontrib><description>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley & Sons, Ltd. ©2020 John Wiley & Sons, Ltd.
Key findings
A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs.
The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction
Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</description><identifier>ISSN: 0197-9337</identifier><identifier>EISSN: 1096-9837</identifier><identifier>DOI: 10.1002/esp.4739</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; DTM ; Earth sciences ; Ecology ; Geomorphology ; geomorphometry ; image inpainting ; Image reconstruction ; Interpolation ; Interpolation techniques ; Kriging interpolation ; Lidar ; Model accuracy ; Mountains ; Representations ; Resolution ; SfM ; Statistical methods ; Surface layers ; Surveying ; Terrain analysis ; Terrain models ; Test procedures ; Topography ; void filling ; Voids</subject><ispartof>Earth surface processes and landforms, 2020-03, Vol.45 (3), p.736-755</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</citedby><cites>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</cites><orcidid>0000-0001-8828-3129 ; 0000-0002-5685-4895 ; 0000-0001-7095-6188 ; 0000-0003-3669-9936 ; 0000-0001-5937-454X ; 0000-0003-0499-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fesp.4739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fesp.4739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Crema, Stefano</creatorcontrib><creatorcontrib>Llena, Manel</creatorcontrib><creatorcontrib>Calsamiglia, Aleix</creatorcontrib><creatorcontrib>Estrany, Joan</creatorcontrib><creatorcontrib>Marchi, Lorenzo</creatorcontrib><creatorcontrib>Vericat, Damià</creatorcontrib><creatorcontrib>Cavalli, Marco</creatorcontrib><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><title>Earth surface processes and landforms</title><description>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley & Sons, Ltd. ©2020 John Wiley & Sons, Ltd.
Key findings
A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs.
The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction
Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>DTM</subject><subject>Earth sciences</subject><subject>Ecology</subject><subject>Geomorphology</subject><subject>geomorphometry</subject><subject>image inpainting</subject><subject>Image reconstruction</subject><subject>Interpolation</subject><subject>Interpolation techniques</subject><subject>Kriging interpolation</subject><subject>Lidar</subject><subject>Model accuracy</subject><subject>Mountains</subject><subject>Representations</subject><subject>Resolution</subject><subject>SfM</subject><subject>Statistical methods</subject><subject>Surface layers</subject><subject>Surveying</subject><subject>Terrain analysis</subject><subject>Terrain models</subject><subject>Test procedures</subject><subject>Topography</subject><subject>void filling</subject><subject>Voids</subject><issn>0197-9337</issn><issn>1096-9837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBqMpk2zUpkqD9QULD7cJu506bMTMZkRukz-NJmbLeu7uJ8HM79CLnmbMIZS-8xtJNMCnVCRpypWaLmQp6SEeNKJkoIeU4uQtgxxnk2VyPyk0NDbdOCbTrbbKitW---kBZ2YzuoaIfex4xCA9U-2PBAc1e34Ae2Q7Nt7GePgZbO0y9nC1raqorZHQ29L8Eg9WhcEzrfm866oaegG3S18-3W1dh5a47dGC7JWQlVwKvjHZPV02KVvyTLt-fX_HGZgOAzlUxBzKUxc5VloFAil8V0BikYNgVZwlpJyUvO00KligEypjhHvmYqjYIKJcbk5lAbPx3Gd3rneh83BJ0KyYVk0Uykbg-U8S4Ej6Vuva3B7zVnejCto2k9mI5ockC_bYX7fzm9-Hj_438B5K2Ckg</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Crema, Stefano</creator><creator>Llena, Manel</creator><creator>Calsamiglia, Aleix</creator><creator>Estrany, Joan</creator><creator>Marchi, Lorenzo</creator><creator>Vericat, Damià</creator><creator>Cavalli, Marco</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8828-3129</orcidid><orcidid>https://orcid.org/0000-0002-5685-4895</orcidid><orcidid>https://orcid.org/0000-0001-7095-6188</orcidid><orcidid>https://orcid.org/0000-0003-3669-9936</orcidid><orcidid>https://orcid.org/0000-0001-5937-454X</orcidid><orcidid>https://orcid.org/0000-0003-0499-2556</orcidid></search><sort><creationdate>20200315</creationdate><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><author>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>DTM</topic><topic>Earth sciences</topic><topic>Ecology</topic><topic>Geomorphology</topic><topic>geomorphometry</topic><topic>image inpainting</topic><topic>Image reconstruction</topic><topic>Interpolation</topic><topic>Interpolation techniques</topic><topic>Kriging interpolation</topic><topic>Lidar</topic><topic>Model accuracy</topic><topic>Mountains</topic><topic>Representations</topic><topic>Resolution</topic><topic>SfM</topic><topic>Statistical methods</topic><topic>Surface layers</topic><topic>Surveying</topic><topic>Terrain analysis</topic><topic>Terrain models</topic><topic>Test procedures</topic><topic>Topography</topic><topic>void filling</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crema, Stefano</creatorcontrib><creatorcontrib>Llena, Manel</creatorcontrib><creatorcontrib>Calsamiglia, Aleix</creatorcontrib><creatorcontrib>Estrany, Joan</creatorcontrib><creatorcontrib>Marchi, Lorenzo</creatorcontrib><creatorcontrib>Vericat, Damià</creatorcontrib><creatorcontrib>Cavalli, Marco</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth surface processes and landforms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crema, Stefano</au><au>Llena, Manel</au><au>Calsamiglia, Aleix</au><au>Estrany, Joan</au><au>Marchi, Lorenzo</au><au>Vericat, Damià</au><au>Cavalli, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</atitle><jtitle>Earth surface processes and landforms</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>45</volume><issue>3</issue><spage>736</spage><epage>755</epage><pages>736-755</pages><issn>0197-9337</issn><eissn>1096-9837</eissn><abstract>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley & Sons, Ltd. ©2020 John Wiley & Sons, Ltd.
Key findings
A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs.
The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction
Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/esp.4739</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8828-3129</orcidid><orcidid>https://orcid.org/0000-0002-5685-4895</orcidid><orcidid>https://orcid.org/0000-0001-7095-6188</orcidid><orcidid>https://orcid.org/0000-0003-3669-9936</orcidid><orcidid>https://orcid.org/0000-0001-5937-454X</orcidid><orcidid>https://orcid.org/0000-0003-0499-2556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-9337 |
ispartof | Earth surface processes and landforms, 2020-03, Vol.45 (3), p.736-755 |
issn | 0197-9337 1096-9837 |
language | eng |
recordid | cdi_proquest_journals_2371370489 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Algorithms DTM Earth sciences Ecology Geomorphology geomorphometry image inpainting Image reconstruction Interpolation Interpolation techniques Kriging interpolation Lidar Model accuracy Mountains Representations Resolution SfM Statistical methods Surface layers Surveying Terrain analysis Terrain models Test procedures Topography void filling Voids |
title | Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20inpainting%20improve%20digital%20terrain%20analysis?%20Comparing%20techniques%20for%20void%20filling,%20surface%20reconstruction%20and%20geomorphometric%20analyses&rft.jtitle=Earth%20surface%20processes%20and%20landforms&rft.au=Crema,%20Stefano&rft.date=2020-03-15&rft.volume=45&rft.issue=3&rft.spage=736&rft.epage=755&rft.pages=736-755&rft.issn=0197-9337&rft.eissn=1096-9837&rft_id=info:doi/10.1002/esp.4739&rft_dat=%3Cproquest_cross%3E2371370489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371370489&rft_id=info:pmid/&rfr_iscdi=true |