Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses

The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2020-03, Vol.45 (3), p.736-755
Hauptverfasser: Crema, Stefano, Llena, Manel, Calsamiglia, Aleix, Estrany, Joan, Marchi, Lorenzo, Vericat, Damià, Cavalli, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 3
container_start_page 736
container_title Earth surface processes and landforms
container_volume 45
creator Crema, Stefano
Llena, Manel
Calsamiglia, Aleix
Estrany, Joan
Marchi, Lorenzo
Vericat, Damià
Cavalli, Marco
description The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley & Sons, Ltd. ©2020 John Wiley & Sons, Ltd. Key findings A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs. The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique
doi_str_mv 10.1002/esp.4739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2371370489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371370489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBqMpk2zUpkqD9QULD7cJu506bMTMZkRukz-NJmbLeu7uJ8HM79CLnmbMIZS-8xtJNMCnVCRpypWaLmQp6SEeNKJkoIeU4uQtgxxnk2VyPyk0NDbdOCbTrbbKitW---kBZ2YzuoaIfex4xCA9U-2PBAc1e34Ae2Q7Nt7GePgZbO0y9nC1raqorZHQ29L8Eg9WhcEzrfm866oaegG3S18-3W1dh5a47dGC7JWQlVwKvjHZPV02KVvyTLt-fX_HGZgOAzlUxBzKUxc5VloFAil8V0BikYNgVZwlpJyUvO00KligEypjhHvmYqjYIKJcbk5lAbPx3Gd3rneh83BJ0KyYVk0Uykbg-U8S4Ej6Vuva3B7zVnejCto2k9mI5ockC_bYX7fzm9-Hj_438B5K2Ckg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371370489</pqid></control><display><type>article</type><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</creator><creatorcontrib>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</creatorcontrib><description>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley &amp; Sons, Ltd. ©2020 John Wiley &amp; Sons, Ltd. Key findings A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs. The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</description><identifier>ISSN: 0197-9337</identifier><identifier>EISSN: 1096-9837</identifier><identifier>DOI: 10.1002/esp.4739</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; DTM ; Earth sciences ; Ecology ; Geomorphology ; geomorphometry ; image inpainting ; Image reconstruction ; Interpolation ; Interpolation techniques ; Kriging interpolation ; Lidar ; Model accuracy ; Mountains ; Representations ; Resolution ; SfM ; Statistical methods ; Surface layers ; Surveying ; Terrain analysis ; Terrain models ; Test procedures ; Topography ; void filling ; Voids</subject><ispartof>Earth surface processes and landforms, 2020-03, Vol.45 (3), p.736-755</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</citedby><cites>FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</cites><orcidid>0000-0001-8828-3129 ; 0000-0002-5685-4895 ; 0000-0001-7095-6188 ; 0000-0003-3669-9936 ; 0000-0001-5937-454X ; 0000-0003-0499-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fesp.4739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fesp.4739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Crema, Stefano</creatorcontrib><creatorcontrib>Llena, Manel</creatorcontrib><creatorcontrib>Calsamiglia, Aleix</creatorcontrib><creatorcontrib>Estrany, Joan</creatorcontrib><creatorcontrib>Marchi, Lorenzo</creatorcontrib><creatorcontrib>Vericat, Damià</creatorcontrib><creatorcontrib>Cavalli, Marco</creatorcontrib><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><title>Earth surface processes and landforms</title><description>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley &amp; Sons, Ltd. ©2020 John Wiley &amp; Sons, Ltd. Key findings A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs. The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>DTM</subject><subject>Earth sciences</subject><subject>Ecology</subject><subject>Geomorphology</subject><subject>geomorphometry</subject><subject>image inpainting</subject><subject>Image reconstruction</subject><subject>Interpolation</subject><subject>Interpolation techniques</subject><subject>Kriging interpolation</subject><subject>Lidar</subject><subject>Model accuracy</subject><subject>Mountains</subject><subject>Representations</subject><subject>Resolution</subject><subject>SfM</subject><subject>Statistical methods</subject><subject>Surface layers</subject><subject>Surveying</subject><subject>Terrain analysis</subject><subject>Terrain models</subject><subject>Test procedures</subject><subject>Topography</subject><subject>void filling</subject><subject>Voids</subject><issn>0197-9337</issn><issn>1096-9837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuHBqMpk2zUpkqD9QULD7cJu506bMTMZkRukz-NJmbLeu7uJ8HM79CLnmbMIZS-8xtJNMCnVCRpypWaLmQp6SEeNKJkoIeU4uQtgxxnk2VyPyk0NDbdOCbTrbbKitW---kBZ2YzuoaIfex4xCA9U-2PBAc1e34Ae2Q7Nt7GePgZbO0y9nC1raqorZHQ29L8Eg9WhcEzrfm866oaegG3S18-3W1dh5a47dGC7JWQlVwKvjHZPV02KVvyTLt-fX_HGZgOAzlUxBzKUxc5VloFAil8V0BikYNgVZwlpJyUvO00KligEypjhHvmYqjYIKJcbk5lAbPx3Gd3rneh83BJ0KyYVk0Uykbg-U8S4Ej6Vuva3B7zVnejCto2k9mI5ockC_bYX7fzm9-Hj_438B5K2Ckg</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Crema, Stefano</creator><creator>Llena, Manel</creator><creator>Calsamiglia, Aleix</creator><creator>Estrany, Joan</creator><creator>Marchi, Lorenzo</creator><creator>Vericat, Damià</creator><creator>Cavalli, Marco</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8828-3129</orcidid><orcidid>https://orcid.org/0000-0002-5685-4895</orcidid><orcidid>https://orcid.org/0000-0001-7095-6188</orcidid><orcidid>https://orcid.org/0000-0003-3669-9936</orcidid><orcidid>https://orcid.org/0000-0001-5937-454X</orcidid><orcidid>https://orcid.org/0000-0003-0499-2556</orcidid></search><sort><creationdate>20200315</creationdate><title>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</title><author>Crema, Stefano ; Llena, Manel ; Calsamiglia, Aleix ; Estrany, Joan ; Marchi, Lorenzo ; Vericat, Damià ; Cavalli, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3169-5a387cc8944a9e7e17d56a2ac05a7fab9771f112d9290ae00911e1b092100d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>DTM</topic><topic>Earth sciences</topic><topic>Ecology</topic><topic>Geomorphology</topic><topic>geomorphometry</topic><topic>image inpainting</topic><topic>Image reconstruction</topic><topic>Interpolation</topic><topic>Interpolation techniques</topic><topic>Kriging interpolation</topic><topic>Lidar</topic><topic>Model accuracy</topic><topic>Mountains</topic><topic>Representations</topic><topic>Resolution</topic><topic>SfM</topic><topic>Statistical methods</topic><topic>Surface layers</topic><topic>Surveying</topic><topic>Terrain analysis</topic><topic>Terrain models</topic><topic>Test procedures</topic><topic>Topography</topic><topic>void filling</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crema, Stefano</creatorcontrib><creatorcontrib>Llena, Manel</creatorcontrib><creatorcontrib>Calsamiglia, Aleix</creatorcontrib><creatorcontrib>Estrany, Joan</creatorcontrib><creatorcontrib>Marchi, Lorenzo</creatorcontrib><creatorcontrib>Vericat, Damià</creatorcontrib><creatorcontrib>Cavalli, Marco</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth surface processes and landforms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crema, Stefano</au><au>Llena, Manel</au><au>Calsamiglia, Aleix</au><au>Estrany, Joan</au><au>Marchi, Lorenzo</au><au>Vericat, Damià</au><au>Cavalli, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses</atitle><jtitle>Earth surface processes and landforms</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>45</volume><issue>3</issue><spage>736</spage><epage>755</epage><pages>736-755</pages><issn>0197-9337</issn><eissn>1096-9837</eissn><abstract>The investigation of form and processes in geomorphology and ecology is highly dependent on topographic data: a reliable digital terrain representation is in fact a key issue across environmental and earth sciences. In many cases, the processing of high‐resolution topographic data (e.g., light detection and ranging (LiDAR), structure from motion) has to face issues such as void filling, vegetation/feature removal and interpolation accuracy that are usually related to (i) intrinsic limitations of the adopted technology, (ii) local conditions affecting the survey or (iii) specific design scenario. In this paper, we develop a methodology to test the accuracy of an image inpainting algorithm to fill data voids in complex mountain areas. The devised experiment exploits the availability of a high‐resolution, LiDAR‐derived digital terrain model and the inpainting approach accuracy is checked against some widely used interpolation techniques (natural neighbor, spline, inverse distance weighting, kriging). In order to better mimic the actual surface texture, a methodology to introduce local topographic variability to the interpolated surface is also presented. The results show a better performance of the inpainting algorithm especially in the case of complex and rugged topography. Two examples showing an effective usage and accuracy of the proposed technique are reported, highlighting the drawbacks that a poor surface representation can introduce. The whole procedure is made freely available within a Matlab® script with the addition of sample files. ©2019 John Wiley &amp; Sons, Ltd. ©2020 John Wiley &amp; Sons, Ltd. Key findings A heat‐diffusion‐based inpainting technique is compared to commonly used interpolation algorithms for void filling and surface reconstruction, on high‐resolution DTMs. The inpainting technique was able to reconstruct the surface with high accuracy and preserving original topographical variability for a complex alpine area; furthermore, rendering roughness on top of the interpolation proved its effectiveness for DTM texture reconstruction Geomorphometric analyses highlighted the accuracy and the benefits of the proposed technique</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/esp.4739</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8828-3129</orcidid><orcidid>https://orcid.org/0000-0002-5685-4895</orcidid><orcidid>https://orcid.org/0000-0001-7095-6188</orcidid><orcidid>https://orcid.org/0000-0003-3669-9936</orcidid><orcidid>https://orcid.org/0000-0001-5937-454X</orcidid><orcidid>https://orcid.org/0000-0003-0499-2556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0197-9337
ispartof Earth surface processes and landforms, 2020-03, Vol.45 (3), p.736-755
issn 0197-9337
1096-9837
language eng
recordid cdi_proquest_journals_2371370489
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Algorithms
DTM
Earth sciences
Ecology
Geomorphology
geomorphometry
image inpainting
Image reconstruction
Interpolation
Interpolation techniques
Kriging interpolation
Lidar
Model accuracy
Mountains
Representations
Resolution
SfM
Statistical methods
Surface layers
Surveying
Terrain analysis
Terrain models
Test procedures
Topography
void filling
Voids
title Can inpainting improve digital terrain analysis? Comparing techniques for void filling, surface reconstruction and geomorphometric analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20inpainting%20improve%20digital%20terrain%20analysis?%20Comparing%20techniques%20for%20void%20filling,%20surface%20reconstruction%20and%20geomorphometric%20analyses&rft.jtitle=Earth%20surface%20processes%20and%20landforms&rft.au=Crema,%20Stefano&rft.date=2020-03-15&rft.volume=45&rft.issue=3&rft.spage=736&rft.epage=755&rft.pages=736-755&rft.issn=0197-9337&rft.eissn=1096-9837&rft_id=info:doi/10.1002/esp.4739&rft_dat=%3Cproquest_cross%3E2371370489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371370489&rft_id=info:pmid/&rfr_iscdi=true